Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Methods ; 21(3): 465-476, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38297184

RESUMO

Intrinsically disordered regions (IDRs) are ubiquitous across all domains of life and play a range of functional roles. While folded domains are generally well described by a stable three-dimensional structure, IDRs exist in a collection of interconverting states known as an ensemble. This structural heterogeneity means that IDRs are largely absent from the Protein Data Bank, contributing to a lack of computational approaches to predict ensemble conformational properties from sequence. Here we combine rational sequence design, large-scale molecular simulations and deep learning to develop ALBATROSS, a deep-learning model for predicting ensemble dimensions of IDRs, including the radius of gyration, end-to-end distance, polymer-scaling exponent and ensemble asphericity, directly from sequences at a proteome-wide scale. ALBATROSS is lightweight, easy to use and accessible as both a locally installable software package and a point-and-click-style interface via Google Colab notebooks. We first demonstrate the applicability of our predictors by examining the generalizability of sequence-ensemble relationships in IDRs. Then, we leverage the high-throughput nature of ALBATROSS to characterize the sequence-specific biophysical behavior of IDRs within and between proteomes.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Polímeros
2.
Mol Cell ; 76(1): 177-190.e5, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31421981

RESUMO

The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. The auxin response factor (ARF) transcription factor family regulates auxin-responsive gene expression and exhibits nuclear localization in regions of high auxin responsiveness. Here we show that the ARF7 and ARF19 proteins accumulate in micron-sized assemblies within the cytoplasm of tissues with attenuated auxin responsiveness. We found that the intrinsically disordered middle region and the folded PB1 interaction domain of ARFs drive protein assembly formation. Mutation of a single lysine within the PB1 domain abrogates cytoplasmic assemblies, promotes ARF nuclear localization, and results in an altered transcriptome and morphological defects. Our data suggest a model in which ARF nucleo-cytoplasmic partitioning regulates auxin responsiveness, providing a mechanism for cellular competence for auxin signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Proteínas Intrinsicamente Desordenadas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/genética
3.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37846593

RESUMO

In concert with other phytohormones, auxin regulates plant growth and development. However, how auxin and other phytohormones coordinately regulate distinct processes is not fully understood. In this work, we uncover an auxin-abscisic acid (ABA) interaction module in Arabidopsis that is specific to coordinating activities of these hormones in the hypocotyl. From our forward genetics screen, we determine that ABA biosynthesis is required for the full effects of auxin on hypocotyl elongation. Our data also suggest that ABA biosynthesis is not required for the inhibitory effects of auxin treatment on root elongation. Our transcriptome analysis identified distinct auxin-responsive genes in root and shoot tissues, which is consistent with differential regulation of growth in these tissues. Further, our data suggest that many gene targets repressed upon auxin treatment require an intact ABA pathway for full repression. Our results support a model in which auxin stimulates ABA biosynthesis to fully regulate hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Hipocótilo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Biophys J ; 120(20): 4312-4319, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34480923

RESUMO

Intrinsically disordered proteins and protein regions make up a substantial fraction of many proteomes in which they play a wide variety of essential roles. A critical first step in understanding the role of disordered protein regions in biological function is to identify those disordered regions correctly. Computational methods for disorder prediction have emerged as a core set of tools to guide experiments, interpret results, and develop hypotheses. Given the multiple different predictors available, consensus scores have emerged as a popular approach to mitigate biases or limitations of any single method. Consensus scores integrate the outcome of multiple independent disorder predictors and provide a per-residue value that reflects the number of tools that predict a residue to be disordered. Although consensus scores help mitigate the inherent problems of using any single disorder predictor, they are computationally expensive to generate. They also necessitate the installation of multiple different software tools, which can be prohibitively difficult. To address this challenge, we developed a deep-learning-based predictor of consensus disorder scores. Our predictor, metapredict, utilizes a bidirectional recurrent neural network trained on the consensus disorder scores from 12 proteomes. By benchmarking metapredict using two orthogonal approaches, we found that metapredict is among the most accurate disorder predictors currently available. Metapredict is also remarkably fast, enabling proteome-scale disorder prediction in minutes. Importantly, metapredict is a fully open source and is distributed as a Python package, a collection of command-line tools, and a web server, maximizing the potential practical utility of the predictor. We believe metapredict offers a convenient, accessible, accurate, and high-performance predictor for single-proteins and proteomes alike.


Assuntos
Biologia Computacional , Proteínas Intrinsicamente Desordenadas , Consenso , Bases de Dados de Proteínas , Software
5.
J Exp Bot ; 72(7): 2491-2500, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33454741

RESUMO

Duckweeds are a monophyletic group of rapidly reproducing aquatic monocots in the Lemnaceae family. Given their clonal, exponentially fast reproduction, a key question is whether genome structure is conserved across the species in the absence of meiotic recombination. Here, we studied the genome and proteome of Spirodela polyrhiza, or greater duckweed, which has the largest body plan yet the smallest genome size in the family (1C=150 Mb). Using Oxford Nanopore sequencing combined with Hi-C scaffolding, we generated a highly contiguous, chromosome-scale assembly of S. polyrhiza line Sp7498 (Sp7498_HiC). Both the Sp7498_HiC and Sp9509 genome assemblies reveal large chromosomal misorientations relative to a recent PacBio assembly of Sp7498, highlighting the need for orthogonal long-range scaffolding techniques such as Hi-C and BioNano optical mapping. Shotgun proteomics of Sp7498 verified the expression of ~2250 proteins and revealed a high abundance of proteins involved in photosynthesis and carbohydrate metabolism among other functions. In addition, a strong increase in chloroplast proteins was observed that correlated to chloroplast density. This Sp7498_HiC genome was generated cheaply and quickly with a single Oxford Nanopore MinION flow cell and one Hi-C library in a classroom setting. Combining these data with a mass spectrometry-generated proteome illustrates the utility of duckweed as a model for genomics- and proteomics-based education.


Assuntos
Araceae , Proteínas de Cloroplastos , Araceae/genética , Genoma de Planta , Genômica , Proteômica
6.
Cell Commun Signal ; 19(1): 65, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090478

RESUMO

BACKGROUND: Biomolecular condensates are non-stoichiometric assemblies that are characterized by their capacity to spatially concentrate biomolecules and play a key role in cellular organization. Proteins that drive the formation of biomolecular condensates frequently contain oligomerization domains and intrinsically disordered regions (IDRs), both of which can contribute multivalent interactions that drive higher-order assembly. Our understanding of the relative and temporal contribution of oligomerization domains and IDRs to the material properties of in vivo biomolecular condensates is limited. Similarly, the spatial and temporal dependence of protein oligomeric state inside condensates has been largely unexplored in vivo. METHODS: In this study, we combined quantitative microscopy with number and brightness analysis to investigate the aging, material properties, and protein oligomeric state of biomolecular condensates in vivo. Our work is focused on condensates formed by AUXIN RESPONSE FACTOR 19 (ARF19), a transcription factor integral to the auxin signaling pathway in plants. ARF19 contains a large central glutamine-rich IDR and a C-terminal Phox Bem1 (PB1) oligomerization domain and forms cytoplasmic condensates. RESULTS: Our results reveal that the IDR amino acid composition can influence the morphology and material properties of ARF19 condensates. In contrast the distribution of oligomeric species within condensates appears insensitive to the IDR composition. In addition, we identified a relationship between the abundance of higher- and lower-order oligomers within individual condensates and their apparent fluidity. CONCLUSIONS: IDR amino acid composition affects condensate morphology and material properties. In ARF condensates, altering the amino acid composition of the IDR did not greatly affect the oligomeric state of proteins within the condensate. Video Abstract.


Assuntos
Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Multimerização Proteica , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Fluorescência , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Fluidez de Membrana , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
7.
J Biol Chem ; 294(44): 16374-16384, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527079

RESUMO

Microtubules are cytoskeletal polymers that perform diverse cellular functions. The plus ends of microtubules promote polymer assembly and disassembly and connect the microtubule tips to other cellular structures. The dynamics and functions of microtubule plus ends are governed by microtubule plus end-tracking proteins (+TIPs). Here we report that the Arabidopsis thaliana SPIRAL1 (SPR1) protein, which regulates directional cell expansion, is an autonomous +TIP. Using in vitro reconstitution experiments and total internal reflection fluorescence microscopy, we demonstrate that the conserved N-terminal region of SPR1 and its GGG motif are necessary for +TIP activity whereas the conserved C-terminal region and its PGGG motif are not. We further show that the N- and C-terminal regions, either separated or when fused in tandem (NC), are sufficient for +TIP activity and do not significantly perturb microtubule plus-end dynamics compared with full-length SPR1. We also found that exogenously expressed SPR1-GFP and NC-GFP label microtubule plus ends in plant and animal cells. These results establish SPR1 as a new type of intrinsic +TIP and reveal the utility of NC-GFP as a versatile microtubule plus-end marker.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Plantas/metabolismo , Ligação Proteica
8.
Plant Biotechnol J ; 17(1): 132-140, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29797460

RESUMO

The tomato PROCERA gene encodes a DELLA protein, and loss-of-function mutations derepress growth. We used CRISPR/Cas9 and a single guide RNAs (sgRNA) to target mutations to the PROCERA DELLA domain, and recovered several loss-of-function mutations and a dominant dwarf mutation that carries a deletion of one amino acid in the DELLA domain. This is the first report of a dominant dwarf PROCERA allele. This allele retains partial responsiveness to exogenously applied gibberellin. Heterozygotes show an intermediate phenotype at the seedling stage, but adult heterozygotes are as dwarfed as homozygotes.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/genética , Alelos , Edição de Genes/métodos , Genes de Plantas , Heterozigoto , Homozigoto , Solanum lycopersicum/crescimento & desenvolvimento , Peptídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895487

RESUMO

Intrinsically disordered regions (IDRs) are critical for a wide variety of cellular functions, many of which involve interactions with partner proteins. Molecular recognition is typically considered through the lens of sequence-specific binding events. However, a growing body of work has shown that IDRs often interact with partners in a manner that does not depend on the precise order of the amino acid order, instead driven by complementary chemical interactions leading to disordered bound-state complexes. Despite this emerging paradigm, we lack tools to describe, quantify, predict, and interpret these types of structurally heterogeneous interactions from the underlying amino acid sequences. Here, we repurpose the chemical physics developed originally for molecular simulations to develop an approach for predicting intermolecular interactions between IDRs and partner proteins. Our approach enables the direct prediction of phase diagrams, the identification of chemically-specific interaction hotspots on IDRs, and a route to develop and test mechanistic hypotheses regarding IDR function in the context of molecular recognition. We use our approach to examine a range of systems and questions to highlight its versatility and applicability.

10.
bioRxiv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38853835

RESUMO

The cardiac troponin complex, composed of troponins I, T, and C, plays a central role in regulating the calcium-dependent interactions between myosin and the thin filament. Mutations in troponin can cause cardiomyopathies; however, it is still a major challenge for the field to connect how changes in sequence affect troponin's function. Recent high-resolution structures of the thin filament revealed critical insights into the structure-function relationship of the troponin complex, but there remain large, unresolved segments of troponin, including the troponin-T linker region that is a hotspot for several cardiomyopathy mutations. This unresolved yet functionally-significant linker region has been proposed to be intrinsically disordered, with behaviors that are not well described by traditional structural approaches; however, this proposal has not been experimentally verified. Here, we used a combination of single-molecule Förster resonance energy transfer (FRET), molecular dynamics simulations, and functional reconstitution assays to investigate the troponin-T linker region. We experimentally and computationally show that in the context of both isolated troponin and the fully regulated troponin complex, the linker behaves as a dynamic, intrinsically disordered region. This region undergoes polyampholyte expansion in the presence of high salt and distinct conformational changes during the assembly of the troponin complex. We also examine the ΔE160 hypertrophic cardiomyopathy mutation in the linker, and we demonstrate that this mutation does not affect the conformational dynamics of the linker, rather it allosterically affects interactions with other subunits of the troponin complex, leading to increased molecular contractility. Taken together, our data clearly demonstrate the importance of disorder within the troponin-T linker and provide new insights into the molecular mechanisms controlling the pathogenesis of cardiomyopathies.

11.
Res Sq ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986812

RESUMO

Intrinsically disordered protein regions (IDRs) are ubiquitous across all kingdoms of life and play a variety of essential cellular roles. IDRs exist in a collection of structurally distinct conformers known as an ensemble. IDR amino acid sequence determines its ensemble, which in turn can play an important role in dictating molecular function. Yet a clear link connecting IDR sequence, its ensemble properties, and its molecular function in living cells has not been systematically established. Here, we set out to test this sequence-ensemble-function paradigm using a novel computational method (GOOSE) that enables the rational design of libraries of IDRs by systematically varying specific sequence properties. Using ensemble FRET, we measured the ensemble dimensions of a library of rationally designed IDRs in human-derived cell lines, revealing how IDR sequence influences ensemble dimensions in situ. Furthermore, we show that the interplay between sequence and ensemble can tune an IDR's ability to sense changes in cell volume - a de novomolecular function for these synthetic sequences. Our results establish biophysical rules for intracellular sequence-ensemble relationships, enable a new route for understanding how IDR sequences map to function in live cells, and set the ground for the design of synthetic IDRs with de novo function.

12.
Res Sq ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986897

RESUMO

Objective: Understanding the regulation and function of plant genes is essential for addressing the challenges faced by modern agriculture. Plant transformation, in conjunction with fluorescence microscopy, offers a powerful approach to investigate the dynamic behavior of plant genes and the proteins they encode. We previously developed a set of Gateway-compatible tissue-specific plant transformation vectors. In this paper we aim to expand the toolkit of vectors available for Agrobacterium-mediated plant transformation and protoplast transfection. Results: Here, we introduce new Agrobacterium-mediated plant transformation vectors by introducing additional fluorophores to create the pJRA vector series. Additionally, we introduce the pLCS series of vectors, a new set of modular Gateway- and Gibson assembly-compatible vectors designed for protoplast transfection. All described vectors are available from Addgene to serve as a resource for the plant research community.

13.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37961106

RESUMO

Intrinsically disordered protein regions (IDRs) are ubiquitous across all kingdoms of life and play a variety of essential cellular roles. IDRs exist in a collection of structurally distinct conformers known as an ensemble. An IDR's amino acid sequence determines its ensemble, which in turn can play an important role in dictating molecular function. Yet a clear link connecting IDR sequence, its ensemble properties, and its molecular function in living cells has not been directly established. Here, we set out to test this sequence-ensemble-function paradigm using a novel computational method (GOOSE) that enables the rational design of libraries of IDRs by systematically varying specific sequence properties. Using ensemble FRET, we measured the ensemble dimensions of a library of rationally designed IDRs in human-derived cell lines, revealing how IDR sequence influences ensemble dimensions in situ. Furthermore, we show that the interplay between sequence and ensemble can tune an IDR's ability to sense changes in cell volume - a de novo molecular function for these synthetic sequences. Our results establish biophysical rules for intracellular sequence-ensemble relationships, enable a new route for understanding how IDR sequences map to function in live cells, and set the ground for the design of synthetic IDRs with de novo function.

14.
J Genet Genomics ; 50(7): 473-485, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37187411

RESUMO

The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. Auxin signaling is activated through the phytohormone-induced proteasomal degradation of the Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) family of transcriptional repressors. Notably, many auxin-modulated physiological processes are also regulated by nitric oxide (NO) that executes its biological effects predominantly through protein S-nitrosylation at specific cysteine residues. However, little is known about the molecular mechanisms in regulating the interactive NO and auxin networks. Here, we show that NO represses auxin signaling by inhibiting IAA17 protein degradation. NO induces the S-nitrosylation of Cys-70 located in the intrinsically disordered region of IAA17, which inhibits the TIR1-IAA17 interaction and consequently the proteasomal degradation of IAA17. The accumulation of a higher level of IAA17 attenuates auxin response. Moreover, an IAA17C70W nitrosomimetic mutation renders the accumulation of a higher level of the mutated protein, thereby causing partial resistance to auxin and defective lateral root development. Taken together, these results suggest that S-nitrosylation of IAA17 at Cys-70 inhibits its interaction with TIR1, thereby negatively regulating auxin signaling. This study provides unique molecular insights into the redox-based auxin signaling in regulating plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Nat Commun ; 13(1): 4015, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817767

RESUMO

Auxin critically regulates plant growth and development. Auxin-driven transcriptional responses are mediated through the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARF protein condensation attenuates ARF activity, resulting in dramatic shifts in the auxin transcriptional landscape. Here, we perform a forward genetics screen for ARF hypercondensation, identifying an F-box protein, which we named AUXIN RESPONSE FACTOR F-BOX1 (AFF1). Functional characterization of SCFAFF1 revealed that this E3 ubiquitin ligase directly interacts with ARF19 and ARF7 to regulate their accumulation, condensation, and nucleo-cytoplasmic partitioning. Mutants defective in AFF1 display attenuated auxin responsiveness, and developmental defects, suggesting that SCFAFF1 -mediated regulation of ARF protein drives aspects of auxin response and plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo
16.
Annu Rev Plant Biol ; 72: 17-46, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33684296

RESUMO

A surge in research focused on understanding the physical principles governing the formation, properties, and function of membraneless compartments has occurred over the past decade. Compartments such as the nucleolus, stress granules, and nuclear speckles have been designated as biomolecular condensates to describe their shared property of spatially concentrating biomolecules. Although this research has historically been carried out in animal and fungal systems, recent work has begun to explore whether these same principles are relevant in plants. Effectively understanding and studying biomolecular condensates require interdisciplinary expertise that spans cell biology, biochemistry, and condensed matter physics and biophysics. As such, some involved concepts may be unfamiliar to any given individual. This review focuses on introducing concepts essential to the study of biomolecular condensates and phase separation for biologists seeking to carry out research in this area and further examines aspects of biomolecular condensates that are relevant to plant systems.


Assuntos
Organelas , Plantas , Animais
17.
Dev Cell ; 56(20): 2886-2901.e6, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34655524

RESUMO

Ribonucleoprotein condensates can exhibit diverse physical states in vitro and in vivo. Despite considerable progress, the relevance of condensate physical states for in vivo biological function remains limited. Here, we investigated the physical properties of processing bodies (P bodies) and their impact on mRNA storage in mature Drosophila oocytes. We show that the conserved DEAD-box RNA helicase Me31B forms viscous P body condensates, which adopt an arrested physical state. We demonstrate that structurally distinct proteins and protein-protein interactions, together with RNA, regulate the physical properties of P bodies. Using live imaging and in situ hybridization, we show that the arrested state and integrity of P bodies support the storage of bicoid (bcd) mRNA and that egg activation modulates P body properties, leading to the release of bcd for translation in the early embryo. Together, this work provides an example of how physical states of condensates regulate cellular function in development.


Assuntos
Padronização Corporal/fisiologia , Embrião não Mamífero/metabolismo , Proteínas de Homeodomínio/metabolismo , RNA Mensageiro Estocado/metabolismo , Animais , Padronização Corporal/genética , RNA Helicases DEAD-box/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Corpos de Processamento/metabolismo , Transativadores/metabolismo
18.
Biomolecules ; 10(2)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059519

RESUMO

Plant hormones regulate many aspects of plant growth, development, and response to biotic and abiotic stress. Much research has gone into our understanding of individual plant hormones, focusing primarily on their mechanisms of action and the processes that they regulate. However, recent research has begun to focus on a more complex problem; how various plant hormones work together to regulate growth and developmental processes. In this review, we focus on two phytohormones, abscisic acid (ABA) and auxin. We begin with brief overviews of the hormones individually, followed by in depth analyses of interactions between auxin and ABA, focusing on interactions in individual tissues and how these interactions are occurring where possible. Finally, we end with a brief discussion and future prospects for the field.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Cotilédone/fisiologia , Regulação da Expressão Gênica de Plantas , Homeostase , Hipocótilo , Raízes de Plantas/fisiologia , Transdução de Sinais , Estresse Fisiológico
19.
Dev Cell ; 55(1): 69-83, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049212

RESUMO

The plant cell internal environment is a dynamic, intricate landscape composed of many intracellular compartments. Cells organize some cellular components through formation of biomolecular condensates-non-stoichiometric assemblies of protein and/or nucleic acids. In many cases, phase separation appears to either underly or contribute to the formation of biomolecular condensates. Many canonical membraneless compartments within animal cells form in a manner that is at least consistent with phase separation, including nucleoli, stress granules, Cajal bodies, and numerous additional bodies, regulated by developmental and environmental stimuli. In this Review, we examine the emerging roles for phase separation in plants. Further, drawing on studies carried out in other organisms, we identify cellular phenomenon in plants that might also arise via phase separation. We propose that plants make use of phase separation to a much greater extent than has been previously appreciated, implicating phase separation as an evolutionarily ancient mechanism for cellular organization.


Assuntos
Citoplasma/metabolismo , Organelas/metabolismo , Fenômenos Fisiológicos Vegetais , Animais , Nucléolo Celular/metabolismo , Humanos , Proteínas de Plantas/metabolismo , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA