Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Genes Dev ; 23(22): 2598-603, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19933149

RESUMO

Recent observations highlight that the mammalian genome extensively communicates with itself via long-range chromatin interactions. The causal link between such chromatin cross-talk and epigenetic states is, however, poorly understood. We identify here a network of physically juxtaposed regions from the entire genome with the common denominator of being genomically imprinted. Moreover, CTCF-binding sites within the H19 imprinting control region (ICR) not only determine the physical proximity among imprinted domains, but also transvect allele-specific epigenetic states, identified by replication timing patterns, to interacting, nonallelic imprinted regions during germline development. We conclude that one locus can directly or indirectly pleiotropically influence epigenetic states of multiple regions on other chromosomes with which it interacts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica/genética , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Alelos , Animais , Células Cultivadas , Células-Tronco Embrionárias , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante , RNA não Traduzido
2.
Hum Mol Genet ; 22(7): 1373-82, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23321059

RESUMO

Linkage, association and expression studies previously pointed to the human QKI, KH domain containing, RNA-binding (QKI) as a candidate gene for schizophrenia. Functional studies of the mouse orthologue Qk focused mainly on its role in oligodendrocyte development and myelination, while its function in astroglia remained unexplored. Here, we show that QKI is highly expressed in human primary astrocytes and that its splice forms encode proteins targeting different subcellular localizations. Uncovering the role of QKI in astrocytes is of interest in light of growing evidence implicating astrocyte dysfunction in the pathogenesis of several disorders of the central nervous system. We selectively silenced QKI splice variants in human primary astrocytes and used RNA sequencing to identify differential expression and splice variant composition at the genome-wide level. We found that an mRNA expression of Glial fibrillary acidic protein (GFAP), encoding a major component of astrocyte intermediate filaments, was down-regulated after QKI7 splice variant silencing. Moreover, we identified a potential QKI-binding site within the 3' untranslated region of human GFAP. This sequence was not conserved between mice and humans, raising the possibility that GFAP is a target for QKI in humans but not rodents. Haloperidol treatment of primary astrocytes resulted in coordinated increases in QKI7 and GFAP expression. Taken together, our results provide the first link between QKI and GFAP, two genes with alterations previously observed independently in schizophrenic patients. Our findings for QKI, together with its well-known role in myelination, suggest that QKI is a hub regulator of glia function in humans.


Assuntos
Astrócitos/metabolismo , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteínas de Ligação a RNA/fisiologia , Sequência de Aminoácidos , Antipsicóticos/farmacologia , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Haloperidol/farmacologia , Humanos , Dados de Sequência Molecular , Cultura Primária de Células , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/fisiologia , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/química , Esquizofrenia/metabolismo , Análise de Sequência de RNA , Transcriptoma
3.
Synapse ; 68(12): 624-633, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25139798

RESUMO

Presynaptic proteins orchestrate an intricate interplay of dynamic interactions in order to regulate quantal exocytosis of transmitter-filled vesicles, and their dysregulation might cause neurological and neuropsychiatric dysfunction. Mice carrying a spatiotemporal restriction in the expression of the Vesicular glutamate transporter 2 (Vglut2; aka Slc17a6) in the cortex, amygdala and hippocampal subiculum from the third postnatal week show a strong anxiolytic phenotype and certain behavioral correlates of schizophrenia. To further understand the molecular consequences of this targeted deletion of Vglut2, we performed an unbiased microarray analysis comparing gene expression levels in the subiculum of these conditional Vglut2 knockout mice (Vglut2f/f;CamKII cKO) to those in control littermates. Expression of Unc13C (Munc13-3), a member of the Unc/Munc family, previously shown to be important for glutamatergic transmission, was identified to be significantly down-regulated. Subsequent analysis by quantitative RT-PCR revealed a 50% down-regulation of Munc 13-1, the gene encoding the Unc/Munc subtype described as an essential component in the majority of glutamtergic synapses in the hippocampus. Genes encoding additional components of the presynaptic machinery were also found regulated, including Rab3A, RIM1α, as well as Syntaxin1 and Synaptobrevin. Altered expression levels of these genes were further found in the amygdala and in the retrosplenial group of the cortex, additional regions in which Vglut2 was conditionally targeted. These findings suggest that expression levels of Vglut2 might be important for the maintenance of gene expression in the presynaptic machinery in the adult mouse brain. Synapse 68:624-633, 2014. © 2014 Wiley Periodicals, Inc.

4.
J Neurosci ; 29(7): 2238-51, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19228977

RESUMO

A major challenge in neuroscience is to resolve the connection between gene functionality, neuronal circuits, and behavior. Most, if not all, neuronal circuits of the adult brain contain a glutamatergic component, the nature of which has been difficult to assess because of the vast cellular abundance of glutamate. In this study, we wanted to determine the role of a restricted subpopulation of glutamatergic neurons within the forebrain, the Vglut2-expressing neurons, in neuronal circuitry of higher brain function. Vglut2 expression was selectively deleted in the cortex, hippocampus, and amygdala of preadolescent mice, which resulted in increased locomotor activity, altered social dominance and risk assessment, decreased sensorimotor gating, and impaired long-term spatial memory. Presynaptic VGLUT2-positive terminals were lost in the cortex, striatum, nucleus accumbens, and hippocampus, and a downstream effect on dopamine binding site availability in the striatum was evident. A connection between the induced late-onset, chronic reduction of glutamatergic neurotransmission and dopamine signaling within the circuitry was further substantiated by a partial attenuation of the deficits in sensorimotor gating by the dopamine-stabilizing antipsychotic drug aripiprazole and an increased sensitivity to amphetamine. Somewhat surprisingly, given the restricted expression of Vglut2 in regions responsible for higher brain function, our analyses show that VGLUT2-mediated neurotransmission is required for certain aspects of cognitive, emotional, and social behavior. The present study provides support for the existence of a neurocircuitry that connects changes in VGLUT2-mediated neurotransmission to alterations in the dopaminergic system with schizophrenia-like behavioral deficits as a major outcome.


Assuntos
Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Dopamina/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Envelhecimento/metabolismo , Tonsila do Cerebelo/crescimento & desenvolvimento , Animais , Antipsicóticos/farmacologia , Comportamento Animal/fisiologia , Diferenciação Celular/genética , Córtex Cerebral/crescimento & desenvolvimento , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Ácido Glutâmico/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Plasticidade Neuronal/genética , Núcleo Accumbens/crescimento & desenvolvimento , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiopatologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Filtro Sensorial/genética , Transmissão Sináptica/genética
5.
BMC Psychiatry ; 7: 46, 2007 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-17822540

RESUMO

BACKGROUND: Multiple studies have shown that brain gene expression is disturbed in subjects suffering from schizophrenia. However, disentangling disease effects from alterations caused by medication is a challenging task. The main goal of this study is to find transcriptional alterations in schizophrenia that are independent of neuroleptic treatment. METHODS: We compared the transcriptional profiles in brain autopsy samples from 55 control individuals with that from 55 schizophrenic subjects, subdivided according to the type of antipsychotic medication received. RESULTS: Using global and high-resolution mRNA quantification techniques, we show that genes involved in immune response (GO:0006955) are up regulated in all groups of patients, including those not treated at the time of death. In particular, IFITM2, IFITM3, SERPINA3, and GBP1 showed increased mRNA levels in schizophrenia (p-values from qPCR < or = 0.01). These four genes were co-expressed in both schizophrenic subjects and controls. In-vitro experiments suggest that these genes are expressed in both oligodendrocyte and endothelial cells, where transcription is inducible by the inflammatory cytokines TNF-alpha, IFN-alpha and IFN-gamma. CONCLUSION: Although the modified genes are not classical indicators of chronic or acute inflammation, our results indicate alterations of inflammation-related pathways in schizophrenia. In addition, the observation in oligodendrocyte cells suggests that alterations in inflammatory-related genes may have consequences for myelination. Our findings encourage future research to explore whether anti-inflammatory agents can be used in combination with traditional antipsychotics for a more efficient treatment of schizophrenia.


Assuntos
Expressão Gênica/genética , Inflamação/genética , Proteínas de Ligação a RNA/genética , Esquizofrenia/patologia , Regulação para Cima/genética , Antipsicóticos/uso terapêutico , Encéfalo/patologia , Células Cultivadas , Lobo Frontal/patologia , Proteínas de Ligação ao GTP/genética , Humanos , Hibridização Genética , Inflamação/patologia , Proteínas de Membrana/genética , Análise Serial de Proteínas/métodos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Serpinas/genética , Fator de Necrose Tumoral alfa/genética
6.
J Alzheimers Dis ; 53(1): 209-19, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27163826

RESUMO

Quaking (QKI) is a gene exclusively expressed within glial cells. QKI has previously been implicated in various neurological disorders and diseases, including Alzheimer's disease (AD), a condition for which increasing evidence suggests a central role of glia cells. The objective of the present study was to investigate the expression levels of QKI and three QKI isoforms (QKI5, QKI6, and QKI7) in AD. Genes that have previously been related to the ontogeny and progression of AD, specifically APP, PSEN1, PSEN2, and MAPT, were also investigated. A real-time PCR assay of 123 samples from human postmortem sporadic AD patients and control brains was performed. The expression values were analyzed with an analysis of covariance model and subsequent multiple regressions to explore the possibility of related expression values between QKI, QKI isoforms, and AD-related genes. Further, the sequences of AD-related genes were analyzed for the presence of QKI binding domains. QKI and all measured QKI isoforms were found to be significantly upregulated in AD samples, relative to control samples. However, APP, PSEN1, PSEN2, and MAPT were not found to be significantly different. QKI and QKI isoforms were found to be predictive for the variance of APP, PSEN1, PSEN2, and MAPT, and putative QKI binding sites suggests an interaction with QKI. Overall, these results implicate a possible role of QKI in AD, although the exact mechanism by which this occurs remains to be uncovered.


Assuntos
Doença de Alzheimer , Encéfalo/metabolismo , Emaranhados Neurofibrilares/genética , Placa Amiloide/genética , Proteínas de Ligação a RNA/metabolismo , Regulação para Cima/genética , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análise de Variância , Feminino , Humanos , Modelos Lineares , Masculino , Mutação/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas tau/metabolismo
7.
PLoS One ; 11(1): e0146155, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26727370

RESUMO

Quaking (QKI) is an RNA-binding protein involved in post-transcriptional mRNA processing. This gene is found to be associated with several human neurological disorders. Early expression of QKI proteins in the developing mouse neuroepithelium, together with neural tube defects in Qk mouse mutants, suggest the functional requirement of Qk for the establishment of the nervous system. As a knockout of Qk is embryonic lethal in mice, other model systems like the zebrafish could serve as a tool to study the developmental functions of qki. In the present study we sought to characterize the evolutionary relationship and spatiotemporal expression of qkia, qki2, and qkib; zebrafish homologs of human QKI. We found that qkia is an ancestral paralog of the single tetrapod Qk gene that was likely lost during the fin-to-limb transition. Conversely, qkib and qki2 are orthologs, emerging at the root of the vertebrate and teleost lineage, respectively. Both qki2 and qkib, but not qkia, were expressed in the progenitor domains of the central nervous system, similar to expression of the single gene in mice. Despite having partially overlapping expression domains, each gene has a unique expression pattern, suggesting that these genes have undergone subfunctionalization following duplication. Therefore, we suggest the zebrafish could be used to study the separate functions of qki genes during embryonic development.


Assuntos
Proteínas de Ligação a RNA/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Cordados/anatomia & histologia , Cordados/genética , Sequência Conservada , Evolução Molecular , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização in Situ Fluorescente , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Tubo Neural/metabolismo , Filogenia , Proteínas de Ligação a RNA/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Homologia de Sequência , Especificidade da Espécie , Sintenia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/biossíntese
8.
Biol Psychiatry ; 77(6): 526-36, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25176177

RESUMO

BACKGROUND: The neuromodulatory transmitters, biogenic amines, have profound effects on multiple neurons and are essential for normal behavior and mental health. Here we report that the orphan transporter SLC10A4, which in the brain is exclusively expressed in presynaptic vesicles of monoaminergic and cholinergic neurons, has a regulatory role in dopamine homeostasis. METHODS: We used a combination of molecular and behavioral analyses, pharmacology, and in vivo amperometry to assess the role of SLC10A4 in dopamine-regulated behaviors. RESULTS: We show that SLC10A4 is localized on the same synaptic vesicles as either vesicular acetylcholine transporter or vesicular monoamine transporter 2. We did not find evidence for direct transport of dopamine by SLC10A4; however, synaptic vesicle preparations lacking SLC10A4 showed decreased dopamine vesicular uptake efficiency. Furthermore, we observed an increased acidification in synaptic vesicles isolated from mice overexpressing SLC10A4. Loss of SLC10A4 in mice resulted in reduced striatal serotonin, noradrenaline, and dopamine concentrations and a significantly higher dopamine turnover ratio. Absence of SLC10A4 led to slower dopamine clearance rates in vivo, which resulted in accumulation of extracellular dopamine. Finally, whereas SLC10A4 null mutant mice were slightly hypoactive, they displayed hypersensitivity to administration of amphetamine and tranylcypromine. CONCLUSIONS: Our results demonstrate that SLC10A4 is a vesicular monoaminergic and cholinergic associated transporter that is important for dopamine homeostasis and neuromodulation in vivo. The discovery of SLC10A4 and its role in dopaminergic signaling reveals a novel mechanism for neuromodulation and represents an unexplored target for the treatment of neurological and mental disorders.


Assuntos
Dopamina/metabolismo , Homeostase/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Anfetamina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Camundongos Transgênicos , Inibidores da Monoaminoxidase/farmacologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Norepinefrina/metabolismo , RNA Mensageiro/metabolismo , Serotonina/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Simportadores , Vesículas Sinápticas/metabolismo , Tranilcipromina/farmacologia , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas de Transporte Vesicular/genética
9.
Biol Psychiatry ; 54(11): 1212-21, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14643089

RESUMO

BACKGROUND: RNA expression profiling can provide hints for the selection of candidate susceptibility genes, for formulation of hypotheses about the development of a disease, and/or for selection of candidate gene targets for novel drug development. We measured messenger RNA expression levels of 16 candidate genes in brain samples from 55 schizophrenia patients and 55 controls. This is the largest sample so far used to identify genes differentially expressed in schizophrenia brains. METHODS: We used a sensitive real-time polymerase chain reaction methodology and a novel statistical approach, including the development of a linear model of analysis of covariance type. RESULTS: We found two genes differentially expressed: monoamine oxidase B was significantly increased in schizophrenia brain (p =.001), whereas one of the serotonin receptor genes, serotonin receptor 2C, was significantly decreased (p =.001). Other genes, previously proposed to be differentially expressed in schizophrenia brain, were invariant in our analysis. CONCLUSIONS: The differential expression of serotonin receptor 2C is particularly relevant for the development of new atypical antipsychotic drugs. The strategy presented here is useful to evaluate hypothesizes for the development of the disease proposed by other investigators.


Assuntos
Córtex Cerebral/metabolismo , RNA Mensageiro/biossíntese , Receptor 5-HT2C de Serotonina/biossíntese , Esquizofrenia/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Monoaminoxidase/biossíntese , Monoaminoxidase/genética , Reação em Cadeia da Polimerase , Receptor 5-HT2C de Serotonina/genética
10.
Neurosci Lett ; 326(1): 56-60, 2002 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-12052537

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia in the industrialised world. The two monoamine oxidase (MAO) enzymes, monoamine oxidase A (MAOA) and monoamine oxidase B (MAOB), are important in the metabolism of monoamine neurotransmitters. AD and ageing have been shown to increase enzyme activity for both MAOA and MAOB. An increase (rather than decrease) of enzyme activity is a rare event in a disease that results in a decrease in the number of cells in the brain. The mechanism, transcriptional or post-transcriptional, responsible for the increase in protein activity, is not known. In this study, we investigate for the first time the messenger RNA (mRNA) expression levels of both MAOA and MAOB in 246 cortical brain samples obtained at autopsy from 62 AD patients and 61 normal controls. We found a significant increase in mRNA levels for both MAOA (P=0.001) and MAOB (P=0.002) in disease brain tissue. This indicates that both MAO enzymes might be important in the progression of AD.


Assuntos
Doença de Alzheimer/enzimologia , Lobo Frontal/enzimologia , Monoaminoxidase/análise , RNA Mensageiro/análise , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Autopsia , Feminino , Lobo Frontal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Monoaminoxidase/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
J Proteome Res ; 7(7): 2897-910, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18543961

RESUMO

Phosphorylation of protein tyrosine residues regulates important cell functions and is, when dysregulated, often crucially involved in oncogenesis. It is therefore important to develop and evaluate methods for identifying and studying tyrosine phosphorylated (P-Tyr) proteins. P-Tyr proteins are present at very low concentrations within cells, requiring highly selective enrichment methods to be detected. In this study, we applied immunoaffinity as enrichment step for P-Tyr proteins. Five selected anti-phosphotyrosine antibodies (monoclonal antibodies 4G10, PY100, PYKD1, 13F9 and one polyclonal antiserum) were evaluated with respect to their capability to enrich P-Tyr proteins from cell extracts of the K562 leukemia cell line. The enrichment resulted in the detection of a group of proteins that potentially were tyrosine-phosphorylated (putative P-Tyr proteins). High accuracy identification of actual P-Tyr sites were performed using a highly selective and sensitive liquid chromatography Fourier transform mass spectrometer (LC-FTMS) setup with complementary collision activated dissociation (CAD) and electron capture dissociation (ECD) fragmentations. 4G10 and PY100 antibodies recognized the greatest number of putative P-Tyr proteins in initial screening experiments and were therefore further evaluated and compared in immunoaffinity enrichment of both P-Tyr proteins and peptides. Using the 4G10 antibody for enrichment of proteins, we identified 459 putative P-Tyr proteins by MS. Out of these proteins, 12 were directly verified as P-Tyr proteins by MS analysis of the actual site. Using the PY100 antibody for enrichment of peptides, we detected 67 P-Tyr peptides (sites) and 89 putative P-Tyr proteins. Generally, enrichment at the peptide level made it difficult to reliably determine the identity of the proteins. In contrast, protein identification following immunoaffinity enrichment at the protein level gave greater sequence coverage and thus a higher confidence in the protein identification. By combining all available information, 40 proteins were identified as true P-Tyr proteins from the K562 cell line. In conclusion, this study showed that a combination of immunoaffinity enrichment using multiple antibodies of both intact and digested proteins in parallel experiments is required for best possible coverage of all possible P-Tyr proteins in a sample.


Assuntos
Proteínas/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Anticorpos , Cromatografia Líquida , Análise de Fourier , Humanos , Células K562 , Espectrometria de Massas , Dados de Sequência Molecular , Nanotecnologia , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/imunologia , Fosforilação , Fosfotirosina/análise , Fosfotirosina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA