Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
J Am Chem Soc ; 146(12): 8189-8197, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38471087

RESUMO

Conventional ligands for CsPbBr3 perovskite nanocrystals (NCs), composed of polar, coordinating head groups (e.g., ammonium or zwitterionic) and aliphatic tails, are instrumental in stabilizing the NCs against sintering and aggregation. Nonetheless, the aliphatic (insulating) nature of these ligands represents drawbacks with respect to objectives in optoelectronics, and yet removing these ligands typically leads to a loss of colloidal stability. In this paper, we describe the preparation of CsPbBr3 NCs in the presence of discrete conjugated oligomers that were prepared by an iterative synthetic approach and capped at their chain ends with sulfobetaine zwitterions for perovskite coordination. Notably, these zwitterionic oligofluorenes are compatible with the hot injection and ligand exchange conditions used to prepare CsPbBr3 NCs, yielding stable NC dispersions with high photoluminescence quantum yields (PLQY, >90%) and spectral features representative of both the perovskite core and conjugated ligand shell. Controlling the chain length of these capping ligands effectively regulated inter-NC spacing and packing geometry when cast into solid films, with evidence derived from both transmission electron microscopy (TEM) and grazing incidence X-ray scattering measurements.

2.
J Am Chem Soc ; 146(19): 13000-13009, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710503

RESUMO

Amphiphilic bottlebrush block copolymers (BBCPs), having a hydrophilic bottlebrush polymer (BP) linked covalently to a hydrophobic BP, were found to segregate to liquid-liquid interfaces to minimize the free energy of the system. The key parameter influencing the outcome of the experiments is the ratio between the degree of polymerization of the backbone (NBB) and that of the side-chain brushes (NSC). Specifically, a spherical, star-like configuration results when NBB < NSC, while a cylindrical, bottlebrush-like shape is preferred when NBB > NSC. Dynamic interfacial tension (γ) and fluorescence recovery after photobleaching (FRAP) measurements show that the BBCP configuration influences the areal density and in-plane diffusion at the fluid interface. The characteristic relaxation times associated with BBCP adsorption (τA) and reorganization (τR) were determined by fitting time-dependent interfacial tension measurements to a sum of two exponential relaxation functions. Both τA and τR initially increased with NBB up to 92 repeat units, due to the larger hydrodynamic radius in solution and slower in-plane diffusivity, attributed to a shorter cross-sectional diameter of the side-chains near the block junction. This trend reversed at NBB = 190, with shorter τA and τR attributed to increased segregation strength and exposure of the bare water/toluene interface due to tilting and/or wiggling of the backbone chains, respectively. The adsorption energy barrier decreased with higher NBB, due to a reduced BBCP packing density at the fluid interface. This study provides fundamental insights into macromolecular assembly at fluid interfaces, as it pertains to unique bottlebrush block architectures.

3.
Small ; 20(15): e2308560, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994305

RESUMO

The in-plane packing of gold (Au), polystyrene (PS), and silica (SiO2) spherical nanoparticle (NP) mixtures at a water-oil interface is investigated in situ by UV-vis reflection spectroscopy. All NPs are functionalized with carboxylic acid such that they strongly interact with amine-functionalized ligands dissolved in an immiscible oil phase at the fluid interface. This interaction markedly increases the binding energy of these nanoparticle surfactants (NPSs). The separation distance between the Au NPSs and Au surface coverage are measured by the maximum plasmonic wavelength (λmax) and integrated intensities as the assemblies saturate for different concentrations of non-plasmonic (PS/SiO2) NPs. As the PS/SiO2 content increases, the time to reach intimate Au NP contact also increases, resulting from their hindered mobility. λmax changes within the first few minutes of adsorption due to weak attractive inter-NP forces. Additionally, a sharper peak in the reflection spectrum at NP saturation reveals tighter Au NP packing for assemblies with intermediate non-plasmonic NP content. Grazing incidence small angle X-ray scattering (GISAXS) and scanning electron microscopy (SEM) measurements confirm a decrease in Au NP domain size for mixtures with larger non-plasmonic NP content. The results demonstrate a simple means to probe interfacial phase separation behavior using in situ spectroscopy as interfacial structures densify into jammed, phase-separated NP films.

4.
Soft Matter ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853612

RESUMO

Synthetic replication of the precise mesoscale control found in natural systems poses substantial experimental challenges due to the need for manipulation across multiple length scales (from nano- to millimeter). We address this challenge by using a 'flow coating' method to fabricate polymer ribbons with precisely tunable dimensions and mechanical properties. Overcoming barriers that previously limited the achievable range of properties with this method, we eliminate the need for substrate patterning and post-processing etching to facilitate the production of high aspect ratio, filament-like ribbons across a range of polymers-from glassy polystyrene to elastomeric poly(butadiene), as well as poly(butadiene-block-styrene). Our method uniquely enables the preservation of chemical fidelity, composition, and dimensions of these ribbons, leveraging polymers with elastic moduli from GPa to tens of MPa to achieve multi-scale features. We demonstrate the role of the elastocapillary length (γ/E) in determining morphological outcomes, revealing the increase in curvature with lower elastic modulus. This finding underscores the intricate relationship among surface tension, elastic modulus, and resultant structural form, enabling control over the morphology of mesoscale ribbons. The soft (MPa) polybutadiene-based ribbons exemplify our method's utility, offering structures with significant extensibility, resilience, and ease of handling, thus expanding the potential for future applications. This work advances our understanding of the fundamental principles governing mesoscale structure formation and unlocks new possibilities for designing soft materials with tailored properties, mirroring the complexity and functionality observed in nature.

5.
Soft Matter ; 20(7): 1554-1564, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38270211

RESUMO

Bottlebrush random copolymers (BRCPs), consisting of a random distribution of two homopolymer chains along a backbone, can segregate to the interface between two immiscible homopolymers. BRCPs undergo a reconfiguration, where each block segregates to one of the homopolymer phases, adopting a Janus-type structure, reducing the interfacial tension and promoting adhesion between the two homopolymers, thereby serving as a Janus bottlebrush copolymer (JBCP) compatibilizer. We synthesized a series of JBCPs by copolymerizing deuterated or hydrogenated polystyrene (DPS/PS) and poly(tert-butyl acrylate) (PtBA) macromonomers using ruthenium benzylidene-initiated ring-opening metathesis polymerization (ROMP). Subsequent acid-catalyzed hydrolysis converted the PtBA brushes to poly(acrylic acid) (PAA). The JBCPs were then placed at the interface between DPS/PS homopolymers and poly(2-vinyl pyridine) (P2VP) homopolymers, where the degree of polymerization of the backbone (NBB) and the grafting density (GD) of the JBCPs were varied. Neutron reflectivity (NR) was used to determine the interfacial width and segmental density distributions (including PS homopolymer, PS block, PAA block and P2VP homopolymer) across the polymer-polymer interface. Our findings indicate that the star-like JBCP with NBB = 6 produces the largest interfacial broadening. Increasing NBB to 100 (rod-like shape) and 250 (worm-like shape) reduced the interfacial broadening due to a decrease in the interactions between blocks and homopolymers by stretching of blocks. Decreasing the GD from 100% to 80% at NBB = 100 caused an increase the interfacial width, yet further decreasing the GD to 50% and 20% reduced the interfacial width, as 80% of GD may efficiently increase the flexibility of blocks and promote interactions between homopolymers, while maintaining relatively high number of blocks attached to one molecule. The interfacial conformation of JBCPs was further translated into compatibilization efficiency. Thin film morphology studies showed that only the lower NBB values (NBB = 6 and NBB = 24) and the 80% GD of NBB = 100 had bicontinuous morphologies, due to a sufficient binding energy that arrested phase separation, supported by mechanical testing using asymmetric double cantilever beam (ADCB) tests. These provide fundamental insights into the assembly behavior of JBCPs compatibilizers at homopolymer interfaces, opening strategies for the design of new BCP compatibilizers.

6.
Macromol Rapid Commun ; 45(8): e2300690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38207336

RESUMO

The compositional scope of polymer zwitterions has grown significantly in recent years and now offers designer synthetic materials that are broadly applicable across numerous areas, including supracolloidal structures, electronic materials interfaces, and macromolecular therapeutics. Among recent developments in polymer zwitterion syntheses are those that allow insertion of reactive functionality directly into the zwitterionic moiety, yielding new monomer and polymer structures that hold potential for maximizing the impact of zwitterions on the macromolecular materials chemistry field. This manuscript describes the preparation of zwitterionic choline phosphate (CP) methacrylates containing either aromatic or aliphatic thiols embedded directly into the zwitterionic moiety. The polymerization of these functional CP methacrylates by reversible addition-fragmentation chain-transfer methodology yields polymeric zwitterionic thiols containing protected thiol functionality in the zwitterionic units. After polymerization, the protected thiols are liberated to yield thiol-rich polymer zwitterions which serve as precursors to subsequent reactions that produce polymer networks as well as polymer-protein bioconjugates.


Assuntos
Polimerização , Polímeros , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Polímeros/química , Polímeros/síntese química , Fosforilcolina/química , Fosforilcolina/análogos & derivados , Estrutura Molecular , Metacrilatos/química
7.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903243

RESUMO

Cyclic actuation is critical for driving motion and transport in living systems, ranging from oscillatory motion of bacterial flagella to the rhythmic gait of terrestrial animals. These processes often rely on dynamic and responsive networks of oscillators-a regulatory control system that is challenging to replicate in synthetic active matter. Here, we describe a versatile platform of light-driven active particles with interaction geometries that can be reconfigured on demand, enabling the construction of oscillator and spinner networks. We employ optically induced Marangoni trapping of particles confined to an air-water interface and subjected to patterned illumination. Thermal interactions among multiple particles give rise to complex coupled oscillatory and rotational motions, thus opening frontiers in the design of reconfigurable, multiparticle networks exhibiting collective behavior.


Assuntos
Bactérias/efeitos da radiação , Fenômenos Fisiológicos Bacterianos/efeitos da radiação , Flagelos/fisiologia , Movimento (Física) , Flagelos/efeitos da radiação , Luz , Pinças Ópticas , Água/química
8.
Angew Chem Int Ed Engl ; 63(25): e202404382, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38616164

RESUMO

We formed core-shell-like polyelectrolyte complexes (PECs) from an anionic bottlebrush polymer with poly (acrylic acid) side chains with a cationic linear poly (allylamine hydrochloride). By varying the pH, the number of side chains of the polyanionic BB polymers (Nbb), the charge density of the polyelectrolytes, and the salt concentration, the phase separation behavior and salt resistance of the complexes could be tuned by the conformation of the BBs. By combining the linear/bottlebrush polyelectrolyte complexation with all-liquid 3D printing, flow-through tubular constructs were produced that showed selective transport across the PEC membrane comprising the walls of the tubules. These tubular constructs afford a new platform for flow-through delivery systems.

9.
Langmuir ; 39(7): 2659-2666, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752594

RESUMO

Hydrogels are water-swollen, typically soft networks useful as biomaterials and in other fields of biotechnology. Hydrogel networks capable of sensing and responding to external perturbations, such as light, temperature, pH, or force, are useful across a wide range of applications requiring on-demand cross-linking or dynamic changes. Thus far, although mechanophores have been described as strain-sensitive reactive groups, embedding this type of force-responsiveness into hydrogels is unproven. Here, we synthesized multifunctional polymers that combine a hydrophilic zwitterion with permanently cross-linking alkenes, and dynamically cross-linking disulfides. From these polymers, we created hydrogels that contain irreversible and strong thiol-ene cross-links and reversible disulfide cross-links, and they stiffened in response to strain, increasing hundreds of kPa in modulus under compression. We examined variations in polymer composition and used a constitutive model to determine how to balance the number of thiol-ene vs disulfide cross-links to create maximally force-responsive networks. These strain-stiffening hydrogels represent potential biomaterials that benefit from the mechanoresponsive behavior needed for emerging applications in areas such as tissue engineering.


Assuntos
Hidrogéis , Polímeros , Hidrogéis/química , Polímeros/química , Materiais Biocompatíveis/química , Compostos de Sulfidrila/química , Dissulfetos/química
10.
Macromol Rapid Commun ; 44(7): e2200873, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36698325

RESUMO

A one-step dispersion copolymerization technique is demonstrated to fabricate biphasic particles as an approach to streamline the production of particles with complex morphology. The model system studies a monomer feed of hydrophobic styrene and hydrophilic, zwitterionic sulfobetaine methacrylate (SBMA) in a water/isopropanol cosolvent mixture. The resulting particles have a core-shell morphology that can be transformed, simply by washing the particles with water, into particles with a single surface opening connected to an interior cavity. Results indicate that particle morphology is dependent on the presence of nanoscopic SBMA-rich aggregates in the initial reaction mixture to act as nucleation sites, forming an SBMA-rich core encased in a styrene-rich shell. Systematic study of the morphology evolution reveals that the difference in monomer solubility profile can be exploited to control compositional drift of the particle composition during copolymerization yielding copolymer with sufficiently different composition to form phase-separated particle morphology. When SBMA is replaced with various ionic comonomers, the cavity-forming morphology is observed when reaction conditions result in low solubility of the comonomer in the cosolvent mixture. Based on these results, design guidelines are developed that may be applied to a variety of systems requiring complex and responsive particles made from chemically distinct comonomer pairings.


Assuntos
Polímeros , Estireno , Polímeros/química , Metacrilatos/química , Polimerização
11.
J Am Chem Soc ; 144(48): 22059-22066, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36442142

RESUMO

Stabilization of fluid droplets, classically as oil-in-water or water-in-oil emulsions, is typically conducted using molecular surfactants or small particulates that localize at oil-water interfaces. In this paper, we describe a method whereby thin polymer films are converted photolithographically to ribbon-like mesoscale objects, which, in turn, adsorb to fluid interfaces where they extend as appendages, or arms, from the droplet surface. These "mesoscale polymer surfactants", or MPSs, were prepared from thin polymer films containing reactive functional moieties, including coumarin for photo-cross-linking, triphenylsulfonium for photoacid generation, and tert-butyl ester for solubility switching. The resultant MPSs, prepared initially on Si substrates, were released into water to reveal an exquisite shape sensitivity (forming straight, bent, or helical structures) and affinity for droplet interfaces based on their preparation conditions and the properties of the surrounding liquid. Notably, the lithographic techniques employed were amenable to differentiating the wettability of MPS segments, affording access to diblock-like MPSs which adhered to dispersed droplets via their hydrophobic segments, allowing their hydrophilic segments to extend into the continuous phase.

12.
Chemistry ; 28(30): e202200409, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35373422

RESUMO

Traditional hot injection methods for the preparation of cesium lead halide perovskite nanocrystals (CsPbX3 PNCs, where X=Cl, Br, or I) rely on small molecule surfactants to produce PNCs with cube, plate, or rod-like morphologies. Here, we describe a new method whereby zwitterionic block copolymers are employed as macromolecular ligands in PNC synthesis, affording PNCs with excellent colloidal stability, high photoluminescence quantum yield, and in some cases distinctly non-cubic shapes. The block copolymers used in this study - composed of a poly(n-butyl methacrylate) hydrophobic block and zwitterionic methacrylate hydrophilic blocks - dissolve in useful solvents for PNC growth despite containing large mole percentages of zwitterionic groups. PNCs prepared with block copolymer ligands were found to disperse and retain their fluorescence in a range of polar organic solvents and were amenable to direct integration into optically transparent nanocomposite thin films with high PNC content.

13.
Biomacromolecules ; 23(10): 4029-4040, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36125365

RESUMO

Gene delivery as a therapeutic tool continues to advance toward impacting human health, with several gene therapy products receiving FDA approval over the past 5 years. Despite this important progress, the safety and efficacy of gene therapy methodology requires further improvement to ensure that nucleic acid therapeutics reach the desired targets while minimizing adverse effects. Synthetic polymers offer several enticing features as nucleic acid delivery vectors due to their versatile functionalities and architectures and the ability of synthetic chemists to rapidly build large libraries of polymeric candidates equipped for DNA/RNA complexation and transport. Current synthetic designs are pursuing challenging objectives that seek to improve transfection efficiency and, at the same time, mitigate cytotoxicity. This Perspective will describe recent work in polymer-based gene complexation and delivery vectors in which cationic polyelectrolytes are modified synthetically by introduction of additional components─including hydrophobic, hydrophilic, and fluorinated units─as well as embedding of degradable linkages within the macromolecular structure. As will be seen, recent advances employing these emerging design strategies are promising with respect to their excellent biocompatibility and transfection capability, suggesting continued promise of synthetic polymer gene delivery vectors going forward.


Assuntos
Ácidos Nucleicos , DNA/química , Técnicas de Transferência de Genes , Humanos , Polímeros/química , RNA , Transfecção
14.
Macromol Rapid Commun ; 43(12): e2100678, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34962321

RESUMO

Polymer zwitterions continue to emerge as useful materials for numerous applications, ranging from hydrophilic and antifouling coatings to electronic materials interfaces. While several polymer zwitterion compositions are now well established, interest in this field of soft materials science has grown rapidly in recent years due to the introduction of new structures that diversify their chemistry and architecture. Nonetheless, at present, the variation of the chemical composition of the anionic and cationic components of zwitterionic structures remains relatively limited to a few primary examples. In this article, the versatility of 4-vinylbenzyl sultone as a precursor to ammonium sulfonate zwitterionic monomers, which are then used in controlled free radical polymerization chemistry to afford "inverted sulfobetaine" polymer zwitterions, is highlighted. An evaluation of the solubility, interfacial activity, and solution configuration of the resultant polymers reveals the dependence of properties on the selection of tertiary amines used for nucleophilic ring-opening of the sultone precursor, as well as useful properties comparisons across different zwitterionic compositions.


Assuntos
Compostos de Amônio , Polímeros , Cátions , Interações Hidrofóbicas e Hidrofílicas , Polimerização , Polímeros/química
15.
Angew Chem Int Ed Engl ; 61(19): e202200530, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35224828

RESUMO

Bottlebrush random copolymers (BRCPs), having randomly distributed hydrophilic and hydrophobic side chains, are shown to reconfigure into hydrophilic-rich and hydrophobic-rich conformations at liquid-liquid interfaces to reduce interfacial energy. Both the degree of polymerization (NBB ) and extent of grafting in these BRCPs were found to impact surface coverage and assembly kinetics. The time-dependence of the interfacial tension is described as the sum of two exponential relaxation functions characterizing BRCP diffusion, interfacial adsorption, and reorganization. Interfacial tension (γ) and fluorescence recovery after photobleaching (FRAP) results showed that higher molecular weight BRCPs require longer time to adsorb to the water-oil interface, but less time for interfacial reorganization. Overall, this work describes fundamental principles of BRCP assembly at liquid-liquid interfaces, with implications pertaining to polymer design with enhanced understanding of emulsification, adhesion, and related properties in fluids and at interfaces.

16.
Angew Chem Int Ed Engl ; 61(37): e202207126, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35925675

RESUMO

Post-synthesis anion exchange of all-inorganic cesium lead halide perovskite nanocrystals (CsPbX3 NCs, where X=Cl, Br, and/or I) provides a rapid and simple means of tuning their band gap and photoluminescence emission wavelengths. Here we report color-shifting of CsPbX3 nanocrystals induced by a macromolecular source of halide ions, specifically using polystyrene with ammonium halides as pendent groups. This strategy for introducing new halides to the perovskite nanocrystals gave access to perovskite-polymer hybrid materials as solutions, thin films, or free-flowing powders. Spectroscopic measurements of the halide-exchanged nanocrystal products revealed high photoluminescence quantum yields across the visible spectrum, with exchange kinetics that were tunable based on the solution environment, suggesting an aggregation-inhibited exchange process that affords access to multi-colored solutions and films.

17.
Angew Chem Int Ed Engl ; 61(25): e202201392, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35388568

RESUMO

In situ manipulation of the chemical composition of block copolymers at the fluid interfaces affords a route by which the interfacial tension, the packing of the copolymers, and the penetration of the blocks into the two liquids can be controlled. Here, a series of linear block copolymers of poly(solketal methacrylate-b-styrene) (PSM-b-PS) are used, converting hydrophobic PSM block into a hydrophilic glycerol monomethacrylate (GM) block, that results in a marked decrease in the liquid-liquid interfacial tension. The kinetics of the first-order hydrolysis reaction was analyzed by monitoring the time-dependent interfacial tension as a function of pH, polymer concentration, molecular weight, and composition. Fluorescence recovery after photobleaching (FRAP) was used to measure the in-plane dynamics of the copolymers before and after hydrolysis. This work provides insights into a quantitative pathway by which in situ interfacial reactions may be performed and monitored in real time, completely changing the interfacial activity of the molecule.

18.
J Am Chem Soc ; 143(17): 6528-6532, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33885281

RESUMO

Polymer zwitterions are of interest for numerous applications, many of which stem from their antifouling properties when used as hydrophilic coatings. However, the chemical compositions of polymer zwitterions remain limited, with synthetic variants most typically comprising ammonium cations. This manuscript describes the synthesis of novel phosphonium-based zwitterionic monomers, accessed by ring opening of substituted propane sultones with aliphatic and aromatic phosphines, and their polymerization by controlled free radical methods. Interestingly, the resultant polymeric phosphonium sulfonates proved soluble in numerous organic solvents, distinguishing them from the solution properties of more typical hydrophilic polymer zwitterions, with tunable and switchable properties made possible by selection of phosphonium R groups. Block copolymers prepared from these tailored phosphonium sulfonate zwitterions highlight their diverse range of solubility and amenability to aqueous polymer assembly.

19.
J Am Chem Soc ; 143(14): 5558-5564, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33793226

RESUMO

We describe the role of functional polymer surfactants in the construction and triggered collapse of droplet-based fibers and the use of these macroscopic supracolloidal structures for reagent compartmentalization. Copolymer surfactants containing both zwitterionic and tertiary amine pendent groups were synthesized for stabilization of oil-in-water droplets, in which the self-adherent properties of the selected zwitterions impart interdroplet adherence, while the amine groups provide access to pH-triggered coalescence. Macroscopic fibers, obtained by droplet extrusion, were prepared with reagents embedded in spatially distinct components of the fibers. Upon acidification of the continuous aqueous phase, protonation of the polymer surfactants increases their hydrophilicity and causes rapid fiber disruption and collapse. Cross-linked versions of these supracolloidal fibers were stable upon acidification and appeared to direct interdroplet passage of encapsulants along the fiber length. Overall, these functional, responsive emulsions provide a strategy to impart on-demand chemical reactivity to soft materials structures that benefits from the interfacial chemistry of the system.


Assuntos
Tensoativos/química , Aminas/química , Emulsões , Tamanho da Partícula , Água/química
20.
Biomacromolecules ; 22(3): 1305-1311, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33591727

RESUMO

Protein-based electronic biomaterials represent an attractive alternative to traditional metallic and semiconductor materials due to their environmentally benign production and purification. However, major challenges hindering further development of these materials include (1) limitations associated with processing proteins in organic solvents and (2) difficulties in forming higher-order structures or scaffolds with multilength scale control. This paper addresses both challenges, resulting in the formation of one-dimensional bundles composed of electrically conductive protein nanowires harvested from the microbes Geobacter sulfurreducens and Escherichia coli. Processing these bionanowires from common organic solvents, such as hexane, cyclohexane, and DMF, enabled the production of multilength scale structures composed of distinctly visible pili. Transmission electron microscopy revealed striking images of bundled protein nanowires up to 10 µm in length and with widths ranging from 50-500 nm (representing assembly of tens to hundreds of nanowires). Conductive atomic force microscopy confirmed the presence of an appreciable nanowire conductivity in their bundled state. These results greatly expand the possibilities for fabricating a diverse array of protein nanowire-based electronic device architectures.


Assuntos
Geobacter , Nanofios , Condutividade Elétrica , Transporte de Elétrons , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA