Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Bioinformatics ; 37(18): 2889-2895, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33824954

RESUMO

MOTIVATION: Do machine learning methods improve standard deconvolution techniques for gene expression data? This article uses a unique new dataset combined with an open innovation competition to evaluate a wide range of approaches developed by 294 competitors from 20 countries. The competition's objective was to address a deconvolution problem critical to analyzing genetic perturbations from the Connectivity Map. The issue consists of separating gene expression of individual genes from raw measurements obtained from gene pairs. We evaluated the outcomes using ground-truth data (direct measurements for single genes) obtained from the same samples. RESULTS: We find that the top-ranked algorithm, based on random forest regression, beat the other methods in accuracy and reproducibility; more traditional gaussian-mixture methods performed well and tended to be faster, and the best deep learning approach yielded outcomes slightly inferior to the above methods. We anticipate researchers in the field will find the dataset and algorithms developed in this study to be a powerful research tool for benchmarking their deconvolution methods and a resource useful for multiple applications. AVAILABILITY AND IMPLEMENTATION: The data is freely available at clue.io/data (section Contests) and the software is on GitHub at https://github.com/cmap/gene_deconvolution_challenge. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Reprodutibilidade dos Testes , Algoritmo Florestas Aleatórias , Biologia
2.
J Bacteriol ; 203(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753465

RESUMO

VxrA and VxrB are cognate histidine kinase (HK) - response regulator (RR) pairs of a two-component signaling system (TCS) found in Vibrio cholerae, a bacterial pathogen that causes cholera. The VxrAB TCS positively regulates virulence, the Type VI Secretion System, biofilm formation, and cell wall homeostasis in V. cholerae, providing protection from environmental stresses and contributing to the transmission and virulence of the pathogen. The VxrA HK has a unique periplasmic sensor domain (SD) and, remarkably, lacks a cytoplasmic linker domain between the second transmembrane helix and the dimerization and histidine phosphotransfer (DHp) domain, indicating that this system may utilize a potentially unique signal sensing and transmission TCS mechanism. In this study, we have determined several crystal structures of VxrA-SD and its mutants. These structures reveal a novel structural fold forming an unusual ß hairpin-swapped dimer. A conformational change caused by relative rotation of the two monomers in a VxrA-SD dimer could potentially change the association of transmembrane helices and, subsequently, the pairing of cytoplasmic DHp domains. Based on the structural observation, we propose a putative scissor-like closing regulation mechanism for the VxrA HK.IMPORTANCE V. cholerae has a dynamic life cycle, which requires rapid adaptation to changing external conditions. Two-component signal transduction (TCS) systems allow V. cholerae to sense and respond to these environmental changes. The VxrAB TCS positively regulates a number of important V. cholerae phenotypes, including virulence, the Type Six Secretion System, biofilm formation, and cell wall homeostasis. Here, we provide the crystal structure of the VxrA sensor histidine kinase sensing domain and propose a mechanism for signal transduction. The cognate signal for VxrAB remains unknown, however, in this work we couple our structural analysis with functional assessments of key residues to further our understanding of this important TCS.

3.
Nat Chem Biol ; 14(7): 730-737, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29867143

RESUMO

Acyl-coenzyme A (CoA) ligases catalyze the activation of carboxylic acids via a two-step reaction of adenylation followed by thioesterification. Here, we report the discovery of a non-adenylating acyl-CoA ligase PtmA2 and the functional separation of an acyl-CoA ligase reaction. Both PtmA1 and PtmA2, two acyl-CoA ligases from the biosynthetic pathway of platensimycin and platencin, are necessary for the two steps of CoA activation. Gene inactivation of ptmA1 and ptmA2 resulted in the accumulation of free acid and adenylate intermediates, respectively. Enzymatic and structural characterization of PtmA2 confirmed its ability to only catalyze thioesterification. Structural characterization of PtmA2 revealed it binds both free acid and adenylate substrates and undergoes the established mechanism of domain alternation. Finally, site-directed mutagenesis restored both the adenylation and complete CoA activation reactions. This study challenges the currently accepted paradigm of adenylating enzymes and inspires future investigations on functionally separated acyl-CoA ligases and their ramifications in biology.


Assuntos
Coenzima A Ligases/metabolismo , Biocatálise , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Coenzima A Ligases/química , Coenzima A Ligases/isolamento & purificação , Ésteres/química , Ésteres/metabolismo , Modelos Moleculares , Estrutura Molecular , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(41): 12693-8, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26420866

RESUMO

Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.


Assuntos
Evolução Molecular , Policetídeo Sintases/química , Cristalografia por Raios X , Policetídeo Sintases/genética , Estrutura Terciária de Proteína , Especificidade por Substrato
5.
Biochem J ; 473(9): 1141-52, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26929404

RESUMO

We investigate the evolution of co-occurring analogous enzymes involved in L-tryptophan and L-histidine biosynthesis in Actinobacteria Phylogenetic analysis of trpF homologues, a missing gene in certain clades of this lineage whose absence is complemented by a dual-substrate HisA homologue, termed PriA, found that they fall into three categories: (i) trpF-1, an L-tryptophan biosynthetic gene horizontally acquired by certain Corynebacterium species; (ii) trpF-2, a paralogue known to be involved in synthesizing a pyrrolopyrrole moiety and (iii) trpF-3, a variable non-conserved orthologue of trpF-1 We previously investigated the effect of trpF-1 upon the evolution of PriA substrate specificity, but nothing is known about the relationship between trpF-3 and priA After in vitro steady-state enzyme kinetics we found that trpF-3 encodes a phosphoribosyl anthranilate isomerase. However, mutation of this gene in Streptomyces sviceus did not lead to auxothrophy, as expected from the biosynthetic role of trpF-1 Biochemical characterization of a dozen co-occurring TrpF-2 or TrpF-3, with PriA homologues, explained the prototrophic phenotype, and unveiled an enzyme activity trade-off between TrpF and PriA. X-ray structural analysis suggests that the function of these PriA homologues is mediated by non-conserved mutations in the flexible L5 loop, which may be responsible for different substrate affinities. Thus, the PriA homologues that co-occur with TrpF-3 represent a novel enzyme family, termed PriB, which evolved in response to PRA isomerase activity. The characterization of co-occurring enzymes provides insights into the influence of functional redundancy on the evolution of enzyme function, which could be useful for enzyme functional annotation.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Isomerases/genética , Streptomyces , Estrutura Secundária de Proteína , Streptomyces/enzimologia , Streptomyces/genética
6.
J Biol Chem ; 290(43): 26249-58, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26240141

RESUMO

Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a >15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process.


Assuntos
Glucose 1-Desidrogenase/química , Pentoses/biossíntese , Sequência de Aminoácidos , Sequência de Carboidratos , Cristalografia por Raios X , Glucose 1-Desidrogenase/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Pentoses/química , Conformação Proteica , Homologia de Sequência de Aminoácidos
7.
J Am Chem Soc ; 138(34): 10905-15, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27490479

RESUMO

Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αßγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (ßγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Organofosfatos/metabolismo , Streptomyces/enzimologia , Domínio Catalítico , Modelos Moleculares
8.
Phys Rev Lett ; 117(7): 072002, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563954

RESUMO

Standard methods for including electromagnetic interactions in lattice quantum chromodynamics calculations result in power-law finite-volume corrections to physical quantities. Removing these by extrapolation requires costly computations at multiple volumes. We introduce a photon mass to alternatively regulate the infrared, and rely on effective field theory to remove its unphysical effects. Electromagnetic modifications to the hadron spectrum are reliably estimated with a precision and cost comparable to conventional approaches that utilize multiple larger volumes. A significant overall cost advantage emerges when accounting for ensemble generation. The proposed method may benefit lattice calculations involving multiple charged hadrons, as well as quantum many-body computations with long-range Coulomb interactions.

9.
FASEB J ; 29(9): 4071-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26062601

RESUMO

Marine sediments host a large population of diverse, heterotrophic, uncultured microorganisms with unknown physiologies that control carbon flow through organic matter decomposition. Recently, single-cell genomics uncovered new key players in these processes, such as the miscellaneous crenarchaeotal group. These widespread archaea encode putative intra- and extracellular proteases for the degradation of detrital proteins present in sediments. Here, we show that one of these enzymes is a self-compartmentalizing tetrameric aminopeptidase with a preference for cysteine and hydrophobic residues at the N terminus of the hydrolyzed peptide. The ability to perform detailed characterizations of enzymes from native subsurface microorganisms, without requiring that those organisms first be grown in pure culture, holds great promise for understanding key carbon transformations in the environment as well as identifying new enzymes for biomedical and biotechnological applications.


Assuntos
Aminopeptidases/química , Organismos Aquáticos/enzimologia , Archaea/enzimologia , Proteínas Arqueais/química , Aminopeptidases/genética , Organismos Aquáticos/genética , Archaea/genética , Proteínas Arqueais/genética
10.
Proteins ; 83(8): 1547-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26061967

RESUMO

AT2433 from Actinomadura melliaura is an indolocarbazole antitumor antibiotic structurally distinguished by its unique aminodideoxypentose-containing disaccharide moiety. The corresponding sugar nucleotide-based biosynthetic pathway for this unusual sugar derives from comparative genomics where AtmS13 has been suggested as the contributing sugar aminotransferase (SAT). Determination of the AtmS13 X-ray structure at 1.50-Å resolution reveals it as a member of the aspartate aminotransferase fold type I (AAT-I). Structural comparisons of AtmS13 with homologous SATs that act upon similar substrates implicate potential active site residues that contribute to distinctions in sugar C5 (hexose vs. pentose) and/or sugar C2 (deoxy vs. hydroxyl) substrate specificity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carbazóis/metabolismo , Transaminases/química , Transaminases/metabolismo , Actinomycetales/enzimologia , Actinomycetales/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transaminases/genética
11.
Eur J Med Chem ; 264: 116011, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065031

RESUMO

The COVID-19 pandemic is caused by SARS-CoV-2, an RNA virus with high transmissibility and mutation rate. Given the paucity of orally bioavailable antiviral drugs to combat SARS-CoV-2 infection, there is a critical need for additional antivirals with alternative mechanisms of action. Papain-like protease (PLpro) is one of the two SARS-CoV-2 encoded viral cysteine proteases essential for viral replication. PLpro cleaves at three sites of the viral polyproteins. In addition, PLpro antagonizes the host immune response upon viral infection by cleaving ISG15 and ubiquitin from host proteins. Therefore, PLpro is a validated antiviral drug target. In this study, we report the X-ray crystal structures of papain-like protease (PLpro) with two potent inhibitors, Jun9722 and Jun9843. Subsequently, we designed and synthesized several series of analogs to explore the structure-activity relationship, which led to the discovery of PLpro inhibitors with potent enzymatic inhibitory activity and antiviral activity against SARS-CoV-2. Together, the lead compounds are promising drug candidates for further development.


Assuntos
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , SARS-CoV-2/metabolismo , Pandemias , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química
12.
iScience ; 27(2): 108976, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38327783

RESUMO

Coronavirus nucleocapsid protein (NP) of SARS-CoV-2 plays a central role in many functions important for virus proliferation including packaging and protecting genomic RNA. The protein shares sequence, structure, and architecture with nucleocapsid proteins from betacoronaviruses. The N-terminal domain (NPRBD) binds RNA and the C-terminal domain is responsible for dimerization. After infection, NP is highly expressed and triggers robust host immune response. The anti-NP antibodies are not protective and not neutralizing but can effectively detect viral proliferation soon after infection. Two structures of SARS-CoV-2 NPRBD were determined providing a continuous model from residue 48 to 173, including RNA binding region and key epitopes. Five structures of NPRBD complexes with human mAbs were isolated using an antigen-bait sorting. Complexes revealed a distinct complement-determining regions and unique sets of epitope recognition. This may assist in the early detection of pathogens and designing peptide-based vaccines. Mutations that significantly increase viral load were mapped on developed, full length NP model, likely impacting interactions with host proteins and viral RNA.

13.
Alcohol Clin Exp Res ; 37(5): 831-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23278634

RESUMO

BACKGROUND: Evidence suggests that abstinent alcoholics have difficulties processing a variety of emotion-laden stimuli, and some of these difficulties may not fully resolve with long-term abstinence. The current study examined whether emotion-word processing difficulties were present in long-term abstinent alcoholics (LTAA; 18+ months of sobriety) with and without a previously diagnosed externalizing (EXT; antisocial personality disorder and/or attention-deficit/hyperactivity disorder diagnosis) disorder. METHODS: Subjects (N = 121) completed an affective go/no-go (AGNG) task with positive, negative, and neutral emotion-word stimuli, and a lexical decision-making (LDM) task with nonemotion word and nonword stimuli. Nonsubstance abusing controls (NSAC; n = 38, 50.0% women, mean age = 48 ± 7.8), LTAA with EXT (n = 32, 41% women, mean age = 47.1 ± 6.6), and LTAA without EXT (n = 51, 47% women, mean age = 49.7 ± 6.5) were compared between signal discriminability (d') and mean response times (RT) for correct responses (mcRT). RESULTS: In the LDM task, LTAA had lower (d') values and slower mcRT than NSAC. In the AGNG task, LTAA and NSAC did not differ in AGNG task mcRT. LTAA had lower (d') values than NSAC, and this effect was partially associated with group differences in LDM task (d') values. In LTAA, lower AGNG (d') values also were associated with an earlier age of first drink, greater lifetime alcohol use, and a history of EXT disorder. CONCLUSIONS: Our findings suggest that detecting the emotional content of words is impaired in LTAA, and this impairment is over and above LTAA's more general lexical processing difficulties. Results also suggest that specific emotion processing impairments in LTAA may be exacerbated by greater lifetime alcohol use burden and other comorbid EXT diagnoses.


Assuntos
Alcoolismo/psicologia , Transtorno da Personalidade Antissocial/psicologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Transtornos Cognitivos/psicologia , Discriminação Psicológica , Emoções , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação , Detecção de Sinal Psicológico , Temperança/psicologia
14.
Behav Res Methods ; 45(4): 1048-57, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23475829

RESUMO

Workload capacity, an important concept in many areas of psychology, describes processing efficiency across changes in workload. The capacity coefficient is a function across time that provides a useful measure of this construct. Until now, most analyses of the capacity coefficient have focused on the magnitude of this function, and often only in terms of a qualitative comparison (greater than or less than one). This work explains how a functional extension of principal components analysis can capture the time-extended information of these functional data, using a small number of scalar values chosen to emphasize the variance between participants and conditions. This approach provides many possibilities for a more fine-grained study of differences in workload capacity across tasks and individuals.


Assuntos
Modelos Psicológicos , Modelos Estatísticos , Análise de Componente Principal , Carga de Trabalho/psicologia , Humanos , Tempo de Reação , Avaliação da Capacidade de Trabalho
15.
bioRxiv ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35547846

RESUMO

The Papain-like protease (PLpro) is a domain of a multi-functional, non-structural protein 3 of coronaviruses. PLpro cleaves viral polyproteins and posttranslational conjugates with poly-ubiquitin and protective ISG15, composed of two ubiquitin-like (UBL) domains. Across coronaviruses, PLpro showed divergent selectivity for recognition and cleavage of posttranslational conjugates despite sequence conservation. We show that SARS-CoV-2 PLpro binds human ISG15 and K48-linked di-ubiquitin (K48-Ub 2 ) with nanomolar affinity and detect alternate weaker-binding modes. Crystal structures of untethered PLpro complexes with ISG15 and K48-Ub 2 combined with solution NMR and cross-linking mass spectrometry revealed how the two domains of ISG15 or K48-Ub 2 are differently utilized in interactions with PLpro. Analysis of protein interface energetics predicted differential binding stabilities of the two UBL/Ub domains that were validated experimentally. We emphasize how substrate recognition can be tuned to cleave specifically ISG15 or K48-Ub 2 modifications while retaining capacity to cleave mono-Ub conjugates. These results highlight alternative druggable surfaces that would inhibit PLpro function.

16.
Nat Commun ; 14(1): 2366, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185902

RESUMO

The Papain-like protease (PLpro) is a domain of a multi-functional, non-structural protein 3 of coronaviruses. PLpro cleaves viral polyproteins and posttranslational conjugates with poly-ubiquitin and protective ISG15, composed of two ubiquitin-like (UBL) domains. Across coronaviruses, PLpro showed divergent selectivity for recognition and cleavage of posttranslational conjugates despite sequence conservation. We show that SARS-CoV-2 PLpro binds human ISG15 and K48-linked di-ubiquitin (K48-Ub2) with nanomolar affinity and detect alternate weaker-binding modes. Crystal structures of untethered PLpro complexes with ISG15 and K48-Ub2 combined with solution NMR and cross-linking mass spectrometry revealed how the two domains of ISG15 or K48-Ub2 are differently utilized in interactions with PLpro. Analysis of protein interface energetics predicted differential binding stabilities of the two UBL/Ub domains that were validated experimentally. We emphasize how substrate recognition can be tuned to cleave specifically ISG15 or K48-Ub2 modifications while retaining capacity to cleave mono-Ub conjugates. These results highlight alternative druggable surfaces that would inhibit PLpro function.


Assuntos
COVID-19 , SARS-CoV-2 , Ubiquitina , Humanos , Citocinas/metabolismo , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
17.
Microbiol Resour Announc ; 12(2): e0101322, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36695589

RESUMO

Klebsiella pneumoniae is a leading cause of antibiotic-resistant-associated deaths in the world. Here, we report the deposition of 14 structures of enzymes from both the core and accessory genomes of sequence type 23 (ST23) K1 hypervirulent K. pneumoniae.

18.
Phys Rev Lett ; 109(25): 250403, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23368437

RESUMO

I present lattice Monte Carlo calculations for a universal four-component Fermi gas confined to a finite box and to a harmonic trap in one spatial dimension. I obtain the values ξ(1D) = 0.370(4) and ξ(1D) = 0.372(1), respectively, for the Bertsch parameter, a nonperturbative universal constant defined as the (square of the) energy of the untrapped (trapped) system measured in units of the free gas energy. The Bertsch parameter obtained for the one-dimensional system is consistent to within ~1% uncertainties with the most recent numerical and experimental estimates of the analogous Bertsch parameter for a three-dimensional spin-1/2 Fermi gas at unitarity. The finding suggests the intriguing possibility that there exists a universality between two conformal theories in different dimensions. To lend support to this study, I also compute ground state energies for four and five fermions confined to a harmonic trap and demonstrate the restoration of a virial theorem in the continuum limit. The continuum few-body energies obtained are consistent with exact analytical calculations to within ~1.0% and ~0.3% statistical uncertainties, respectively.

19.
Microbiol Spectr ; 10(2): e0013922, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35195438

RESUMO

Phylogenetically diverse bacteria can carry out chloramphenicol reduction, but only a single enzyme has been described that efficiently catalyzes this reaction, the NfsB nitroreductase from Haemophilus influenzae strain KW20. Here, we tested the hypothesis that some NfsB homologs function as housekeeping enzymes with the potential to become chloramphenicol resistance enzymes. We found that expression of H. influenzae and Neisseria spp. nfsB genes, but not Pasteurella multocida nfsB, allows Escherichia coli to resist chloramphenicol by nitroreduction. Mass spectrometric analysis confirmed that purified H. influenzae and N. meningitides NfsB enzymes reduce chloramphenicol to amino-chloramphenicol, while kinetics analyses supported the hypothesis that chloramphenicol reduction is a secondary activity. We combined these findings with atomic resolution structures of multiple chloramphenicol-reducing NfsB enzymes to identify potential key substrate-binding pocket residues. Our work expands the chloramphenicol reductase family and provides mechanistic insights into how a housekeeping enzyme might confer antibiotic resistance. IMPORTANCE The question of how new enzyme activities evolve is of great biological interest and, in the context of antibiotic resistance, of great medical importance. Here, we have tested the hypothesis that new antibiotic resistance mechanisms may evolve from promiscuous housekeeping enzymes that have antibiotic modification side activities. Previous work identified a Haemophilus influenzae nitroreductase housekeeping enzyme that has the ability to give Escherichia coli resistance to the antibiotic chloramphenicol by nitroreduction. Herein, we extend this work to enzymes from other Haemophilus and Neisseria strains to discover that expression of chloramphenicol reductases is sufficient to confer chloramphenicol resistance to Es. coli, confirming that chloramphenicol reductase activity is widespread across this nitroreductase family. By solving the high-resolution crystal structures of active chloramphenicol reductases, we identified residues important for this activity. Our work supports the hypothesis that housekeeping proteins possessing multiple activities can evolve into antibiotic resistance enzymes.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Cloranfenicol/metabolismo , Cloranfenicol/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Nitrorredutases/química , Nitrorredutases/genética , Nitrorredutases/metabolismo , Oxirredutases/genética
20.
Acta Crystallogr D Struct Biol ; 78(Pt 8): 997-1009, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916224

RESUMO

Protein crystals grown in microfluidic droplets have been shown to be an effective and robust platform for storage, transport and serial crystallography data collection with a minimal impact on diffraction quality. Single macromolecular microcrystals grown in nanolitre-sized droplets allow the very efficient use of protein samples and can produce large quantities of high-quality samples for data collection. However, there are challenges not only in growing crystals in microfluidic droplets, but also in delivering the droplets into X-ray beams, including the physical arrangement, beamline and timing constraints and ease of use. Here, the crystallization of two human gut microbial hydrolases in microfluidic droplets is described: a sample-transport and data-collection approach that is inexpensive, is convenient, requires small amounts of protein and is forgiving. It is shown that crystals can be grown in 50-500 pl droplets when the crystallization conditions are compatible with the droplet environment. Local and remote data-collection methods are described and it is shown that crystals grown in microfluidics droplets and housed as an emulsion in an Eppendorf tube can be shipped from the US to the UK using a FedEx envelope, and data can be collected successfully. Details of how crystals were delivered to the X-ray beam by depositing an emulsion of droplets onto a silicon fixed-target serial device are provided. After three months of storage at 4°C, the crystals endured and diffracted well, showing only a slight decrease in diffracting power, demonstrating a suitable way to grow crystals, and to store and collect the droplets with crystals for data collection. This sample-delivery and data-collection strategy allows crystal droplets to be shipped and set aside until beamtime is available.


Assuntos
Microfluídica , Proteínas , Cristalização , Cristalografia por Raios X , Coleta de Dados , Emulsões , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA