Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118585, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421723

RESUMO

The need for environmental sustainability while increasing the quantity, quality, and the rate of waste treatment to generate high-value environmental friendly fertilizer products is highly in demand. Vermicomposting is a good technology for the valorisation of industrial, domestic, municipal and agricultural wastes. Various vermicomposting technologies have been in use from time past to present. These technologies range from windrow, small - scale batch vermicomposting to large - scale continuous flow systems. Each of these processes has its own merits and demerits, necessitating advancement in the technology for efficient treatment of wastes. This work explores the hypothesis that the use of a continuous flow vermireactor system of a composite frame structure performs better than batch, windrow and other continuous systems operated in a single container. Following an in-depth review of the literature on vermicomposting technologies, treatment techniques, and reactor materials used, to explore the hypothesis, it was found that vermireactors operating in continuous flow fashion perform better in waste bioconversion than the batch and windrow techniques. Overall, the study concludes that batch techniques using plastic vermireactors predominate over the other reactor systems. However, the use of frame compartmentalized composite vermireactors performs considerably better in waste valorisation.


Assuntos
Oligoquetos , Animais , Tecnologia , Agricultura , Fertilizantes , Solo , Esterco
2.
Antonie Van Leeuwenhoek ; 115(1): 69-78, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34762236

RESUMO

The need for sustainability in food supply has led to progressive increase in soil nutrient enrichment. Fertilizer application effects both biological and abiotic processes in the soil, of which the bacterial community that support viral multiplication are equally influenced. Nevertheless, little is known on the effect of soil fertilization on the Soil viral community composition and dynamics. In this study, we evaluated the influence of soil fertilization on the maize rhizosphere viral community growing in Luvisolic soil. The highest abundance of bacteriophages were detected in soil treated with 8 tons/ha compost manure (Cp8), 60 kg/ha inorganic fertilizer (N1), 4 tons/ha compost manure (Cp4) and the unfertilized control (Cn0). Our result showed higher relative abundance of Myoviridae, Podoviridae and Siphoviridae in 8 tons/ha organic manure (Cp8) fertilized compared to others. While Inoviridae and Microviridae were the most relative abundant phage families in 4 tons/ha organic manure (Cp4) fertilized soil. This demonstrate that soil fertilization with organic manure increases the abundance and diversity of viruses in the soil due to its soil conditioning effects.


Assuntos
Metagenômica , Zea mays , Fertilização , Humanos , Rizosfera , Solo , Microbiologia do Solo
3.
Appl Microbiol Biotechnol ; 103(1): 9-25, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30315353

RESUMO

The struggle for survival is a natural and a continuous process. Microbes are struggling to survive by depending on plants for their nutrition while plants on the other hand are resisting the attack of microbes in order to survive. This interaction is a tug of war and the knowledge of microbe-plant relationship will enable farmers/agriculturists improve crop health, yield, sustain regular food supply, and minimize the use of agrochemicals such as fungicides and pesticides in the fight against plant pathogens. Although, these chemicals are capable of inhibiting pathogens, they also constitute an environmental hazard. However, certain microbes known as plant growth-promoting microbes (PGPM) aid in the sensitization and priming of the plant immune defense arsenal for it to conquer invading pathogens. PGPM perform this function by the production of elicitors such as volatile organic compounds, antimicrobials, and/or through competition. These elicitors are capable of inducing the expression of pathogenesis-related genes in plants through induced systemic resistance or acquired systemic resistance channels. This review discusses the current findings on the influence and participation of microbes in plants' resistance to biotic stress and to suggest integrative approach as a better practice in disease management and control for the achievement of sustainable environment, agriculture, and increasing food production.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Plantas/microbiologia , Estresse Fisiológico/fisiologia , Agentes de Controle Biológico , Resistência à Doença , Endófitos/fisiologia , Conservação de Alimentos/métodos , Frutas , Imunidade Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/imunologia , Microbiologia do Solo , Simbiose
4.
Appl Microbiol Biotechnol ; 102(18): 7821-7835, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30030564

RESUMO

Action is needed to face the global threat arising from inconsistent rainfall, rise in temperature, and salinization of farm lands which may be the product of climate change. As crops are adversely affected, man and animals may face famine. Plants are severely affected by abiotic stress (drought, salinity, alkalinity, and temperature), which impairs yield and results in loss to farmers and to the nation at large. However, microbes have been shown to be of great help in the fight against abiotic stress, via their biological activities at the rhizosphere of plants. The external application of chemical substances such as glycine betaine, proline, and nutrients has helped in sustaining plant growth and productive ability. In this review, we tried to understand the part played by bioinoculants in aiding plants to resist the negative consequences arising from abiotic stress and to suggest better practices that will be of help in today's farming systems. The fact that absolute protection and sustainability of plant yield under stress challenges has not been achieved by microbes, nutrients, nor the addition of chemicals (osmo-protectants) alone suggests that studies should focus on the integration of these units (microbes, nutrients, chemical stimulants, and osmo-protectants) into a strategy for achieving a complete tolerance to abiotic stress. Also, other species of microbes capable of shielding plant from stress, boosting yield and growth, providing nutrients, and protecting the plants from harmful invading pathogens should be sought.


Assuntos
Fenômenos Fisiológicos Bacterianos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Microbiologia do Solo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Produtos Agrícolas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Estresse Fisiológico
5.
Front Microbiol ; 14: 1178258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476663

RESUMO

Plants and microbes (mycorrhizal fungi to be precise) have evolved together over the past millions of years into an association that is mutualist. The plants supply the fungi with photosynthates and shelter, while the fungi reciprocate by enhancing nutrient and water uptake by the plants as well as, in some cases, control of soil-borne pathogens, but this fungi-plant association is not always beneficial. We argue that mycorrhizal fungi, despite contributing to plant nutrition, equally increase plant susceptibility to pathogens and herbivorous pests' infestation. Understanding of mycorrhizal fungi strategies for suppressing plant immunity, the phytohormones involved and the signaling pathways that aid them will enable the harnessing of tripartite (consisting of three biological systems)-plant-mycorrhizal fungi-microbe interactions for promoting sustainable production of crops.

6.
Genes (Basel) ; 12(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209356

RESUMO

Biogeochemical cycling of phosphorus in the agro-ecosystem is mediated by soil microbes. These microbes regulate the availability of phosphorus in the soil. Little is known about the response of functional traits of phosphorus cycling microbes in soil fertilized with compost manure (derived from domestic waste and plant materials) or inorganic nitrogen fertilizers at high and low doses. We used a metagenomics investigation study to understand the changes in the abundance and distribution of microbial phosphorus cycling genes in agricultural farmlands receiving inorganic fertilizers (120 kg N/ha, 60 kg N/ha) or compost manure (8 tons/ha, 4 tons/ha), and in comparison with the control. Soil fertilization with high level of compost (Cp8) or low level of inorganic nitrogen (N1) fertilizer have nearly similar effects on the rhizosphere of maize plants in promoting the abundance of genes involved in phosphorus cycle. Genes such as ppk involved in polyphosphate formation and pstSABC (for phosphate transportation) are highly enriched in these treatments. These genes facilitate phosphorus immobilization. At a high dose of inorganic fertilizer application or low compost manure treatment, the phosphorus cycling genes were repressed and the abundance decreased. The bacterial families Bacillaceae and Carnobacteriaceae were very abundant in the high inorganic fertilizer (N2) treated soil, while Pseudonocardiaceae, Clostridiaceae, Cytophagaceae, Micromonosporaceae, Thermomonosporaceae, Nocardiopsaceae, Sphaerobacteraceae, Thermoactinomycetaceae, Planococcaceae, Intrasporangiaceae, Opitutaceae, Acidimicrobiaceae, Frankiaceae were most abundant in Cp8. Pyrenophora, Talaromyces, and Trichophyton fungi were observed to be dominant in Cp8 and Methanosarcina, Methanobrevibacter, Methanoculleus, and Methanosphaera archaea have the highest percentage occurrence in Cp8. Moreover, N2 treatment, Cenarchaeum, Candidatus Nitrososphaera, and Nitrosopumilus were most abundant among fertilized soils. Our findings have brought to light the basis for the manipulation of rhizosphere microbial communities and their genes to improve availability of phosphorus as well as phosphorus cycle regulation in agro-ecosystems.


Assuntos
Proteínas de Bactérias/genética , Fertilizantes/análise , Metagenômica , Fósforo/metabolismo , Rizosfera , Solo/química , Zea mays/genética , Agricultura , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Esterco/microbiologia , Nitrogênio/metabolismo , Fósforo/análise , Microbiologia do Solo , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
7.
Genes (Basel) ; 12(4)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917127

RESUMO

Soil fertility is a function of the level of organic and inorganic substances present in the soil, and it influences the activities of soil-borne microbes, plant growth performance and a host of other beneficial ecological functions. In this metagenomics study, we evaluated the response of maize microbial functional gene diversity involved in chemotaxis, antibiotics, siderophores, and antifungals producing genes within the rhizosphere of maize plants under compost, inorganic fertilizer, and unfertilized conditions. The results show that fertilization treatments at higher compost manure and lower inorganic fertilizer doses as well as maize plants itself in the unfertilized soil through rhizosphere effects share similar influences on the abundance of chemotaxis, siderophores, antifungal, and antibiotics synthesizing genes present in the samples, while higher doses of inorganic fertilizer and lower compost manure treatments significantly repress these genes. The implication is for a disease suppressive soil to be achieved, soil fertilization with high doses of compost manure fertilizer treatments as well as lower inorganic fertilizer should be used to enrich soil fertility and boost the abundance of chemotaxis and disease suppressive genes. Maize crops also should be planted sole or intercropped with other crops to enhance the rhizosphere effect of these plants in promoting the expression and abundance of these beneficial genes in the soil.


Assuntos
Quimiotaxia , Fertilizantes/análise , Metagenômica , Doenças das Plantas/genética , Microbiologia do Solo , Solo/química , Zea mays/genética , Esterco/microbiologia , Doenças das Plantas/microbiologia , Rizosfera , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
8.
AMB Express ; 11(1): 24, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33555438

RESUMO

Soil microbes perform important functions in nitrogen and carbon cycling in the biosphere. Microbial communities in the rhizosphere enhance plants' health and promote nutrient turnover and cycling in the soil. In this study, we evaluated the effects of soil fertilization with organic and inorganic fertilizers on the abundances and distribution of carbon and nitrogen cycling genes within the rhizosphere of maize plants. Our result showed that maize plants through rhizosphere effects selected and enriched the same functional genes glnA, gltB, gudB involved in nitrogen cycle as do high compost and low inorganic fertilizer treatments. This observation was significantly different from those of high doses of inorganic fertilizer and low compost manure treated soil. Only alpha amylase encoding genes were selectively enriched by low compost and high inorganic fertilized soil. The other treatments only selected xynB (in Cp8), lacZ (Cp4), bglA, pldB, trpA (N2), uidA (N1) and glgC, vanA (Cn0) carbon cycling genes in the rhizosphere of maize. Also Actinomycetales are selected by high compost, low inorganic fertilizer and control. The control was without any fertilization and the soil was planted with maize. Bacillales are also promoted by low compost and high inorganic fertilizer. This indicated that only microbes capable of tolerating the stress of high dose of inorganic fertilizer will thrive under such condition. Therefore, soil fertilization lowers nitrogen gas emission as seen with the high abundance of nitrogen assimilation genes or microbial anabolic genes, but increases carbon dioxide evolution in the agricultural soil by promoting the abundance of catabolic genes involve in carbon cycling.

9.
Microbiol Resour Announc ; 9(43)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093043

RESUMO

The need for sustainable agriculture is a global issue that requires urgent attention, particularly in the areas of soil fertility enhancement and management. In this study, the effects of organic and inorganic fertilizers on the rhizosphere microbial communities of maize plants were evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA