Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 616(7957): 563-573, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046094

RESUMO

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Assuntos
Retrovirus Endógenos , Imunoterapia , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/virologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/virologia , Modelos Animais de Doenças , Retrovirus Endógenos/imunologia , Imunoterapia/métodos , Pulmão/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/virologia , Microambiente Tumoral , Linfócitos B/imunologia , Estudos de Coortes , Anticorpos/imunologia , Anticorpos/uso terapêutico
2.
Hum Genomics ; 12(1): 16, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587854

RESUMO

MicroRNAs (miRNAs) are crucial regulators of gene expression in normal development and cellular homeostasis. While miRNA repositories contain thousands of unique sequences, they primarily contain molecules that are conserved across several tissues, largely excluding lineage and tissue-specific miRNAs. By analyzing small non-coding RNA sequencing data for abundance and secondary RNA structure, we discovered 103 miRNA candidates previously undescribed in liver tissue. While expression of some of these unannotated sequences is restricted to non-malignant tissue, downregulation of most of the sequences was detected in liver tumors, indicating their importance in the maintenance of liver homeostasis. Furthermore, target prediction revealed the involvement of the unannotated miRNA candidates in fatty-acid metabolism and tissue regeneration, which are key pathways in liver biology. Here, we provide a comprehensive analysis of the undiscovered liver miRNA transcriptome, providing new resources for a deeper exploration of organ-specific biology and disease.


Assuntos
Fígado/metabolismo , MicroRNAs/genética , Transcriptoma/genética , Sequência Conservada/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/metabolismo , Especificidade de Órgãos , Análise de Sequência de RNA
3.
Mol Cancer ; 15: 5, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26768585

RESUMO

PIWI-interacting RNAs (piRNAs) are emerging players in cancer genomics. Originally described in the germline, there are over 20,000 piRNA genes in the human genome. In contrast to microRNAs, piRNAs interact with PIWI proteins, another member of the Argonaute family, and function primarily in the nucleus. There, they are involved in the epigenetic silencing of transposable elements in addition to the transcriptional regulation of genes. It has recently been demonstrated that piRNAs are also expressed across a variety of human somatic tissue types in a tissue-specific manner. An increasing number of studies have shown that aberrant piRNA expression is a signature feature across multiple tumour types; however, their specific tumorigenic functions remain unclear. In this article, we discuss the emerging functional roles of piRNAs in a variety of cancers, and highlight their potential clinical utilities.


Assuntos
Neoplasias/genética , RNA Interferente Pequeno/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Germinativas/metabolismo , Humanos , Modelos Biológicos , Neoplasias/diagnóstico , Prognóstico
4.
Mol Cancer ; 15(1): 67, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27784305

RESUMO

Lung cancer is a leading cause of cancer-related deaths worldwide. Lung cancer risk factors, including smoking and exposure to environmental carcinogens, have been linked to chronic inflammation. An integral feature of inflammation is the activation, expansion and infiltration of diverse immune cell types, including CD4+ T cells. Within this T cell subset are immunosuppressive regulatory T (Treg) cells and pro-inflammatory T helper 17 (Th17) cells that act in a fine balance to regulate appropriate adaptive immune responses.In the context of lung cancer, evidence suggests that Tregs promote metastasis and metastatic tumor foci development. Additionally, Th17 cells have been shown to be an integral component of the inflammatory milieu in the tumor microenvironment, and potentially involved in promoting distinct lung tumor phenotypes. Studies have shown that the composition of Tregs and Th17 cells are altered in the tumor microenvironment, and that these two CD4+ T cell subsets play active roles in promoting lung cancer progression and metastasis.We review current knowledge on the influence of Treg and Th17 cells on lung cancer tumorigenesis, progression, metastasis and prognosis. Furthermore, we discuss the potential biological and clinical implications of the balance among Treg/Th17 cells in the context of the lung tumor microenvironment and highlight the potential prognostic function and relationship to metastasis in lung cancer.


Assuntos
Neoplasias Pulmonares/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Animais , Progressão da Doença , Humanos , Camundongos , Metástase Neoplásica , Microambiente Tumoral
5.
Gastric Cancer ; 19(2): 660-665, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25779424

RESUMO

The poor survival and recurrence rate in gastric adenocarcinoma highlights the need for cancer gene discovery. Towards this end, we globally assessed the expression of an emerging class of small non-coding RNAs, called PIWI-interacting RNAs (piRNAs). We analysed the transcriptomes of 358 non-malignant stomach tissue and gastric adenocarcinoma samples, and found that nearly half of the expressed piRNAs were overexpressed in tumours. Our gastric piRNA atlas showed that most piRNAs were embedded in protein-coding sequences rather than known piRNA clusters. Furthermore, we identified a three-piRNA signature associated with recurrence-free survival. In this proof-of-principle study, we demonstrate the potential clinical utility of piRNAs in gastric cancer.


Assuntos
Adenocarcinoma/genética , RNA Interferente Pequeno , Neoplasias Gástricas/genética , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Recidiva Local de Neoplasia/genética , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida , Transcriptoma
7.
BMC Cancer ; 14: 778, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25342220

RESUMO

BACKGROUND: Cigarette smoke is associated with the majority of lung cancers: however, 25% of lung cancer patients are non-smokers, and half of all newly diagnosed lung cancer patients are former smokers. Lung tumors exhibit distinct epidemiological, clinical, pathological, and molecular features depending on smoking status, suggesting divergent mechanisms underlie tumorigenesis in smokers and non-smokers. MicroRNAs (miRNAs) are integral contributors to tumorigenesis and mediate biological responses to smoking. Based on the hypothesis that smoking-specific miRNA differences in lung adenocarcinomas reflect distinct tumorigenic processes selected by different smoking and non-smoking environments, we investigated the contribution of miRNA disruption to lung tumor biology and patient outcome in the context of smoking status. METHODS: We applied a whole transcriptome sequencing based approach to interrogate miRNA levels in 94 patient-matched lung adenocarcinoma and non-malignant lung parenchymal tissue pairs from current, former and never smokers. RESULTS: We discovered novel and distinct smoking status-specific patterns of miRNA and miRNA-mediated gene networks, and identified miRNAs that were prognostically significant in a smoking dependent manner. CONCLUSIONS: We conclude that miRNAs disrupted in a smoking status-dependent manner affect distinct cellular pathways and differentially influence lung cancer patient prognosis in current, former and never smokers. Our findings may represent promising biologically relevant markers for lung cancer prognosis or therapeutic intervention.


Assuntos
Adenocarcinoma/etiologia , Adenocarcinoma/mortalidade , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/mortalidade , MicroRNAs/genética , Fumar , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adulto , Idoso , Análise por Conglomerados , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Avaliação de Resultados da Assistência ao Paciente , Prognóstico , Interferência de RNA
8.
Nat Commun ; 15(1): 5135, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879602

RESUMO

The growing scale and dimensionality of multiplexed imaging require reproducible and comprehensive yet user-friendly computational pipelines. TRACERx-PHLEX performs deep learning-based cell segmentation (deep-imcyto), automated cell-type annotation (TYPEx) and interpretable spatial analysis (Spatial-PHLEX) as three independent but interoperable modules. PHLEX generates single-cell identities, cell densities within tissue compartments, marker positivity calls and spatial metrics such as cellular barrier scores, along with summary graphs and spatial visualisations. PHLEX was developed using imaging mass cytometry (IMC) in the TRACERx study, validated using published Co-detection by indexing (CODEX), IMC and orthogonal data and benchmarked against state-of-the-art approaches. We evaluated its use on different tissue types, tissue fixation conditions, image sizes and antibody panels. As PHLEX is an automated and containerised Nextflow pipeline, manual assessment, programming skills or pathology expertise are not essential. PHLEX offers an end-to-end solution in a growing field of highly multiplexed data and provides clinically relevant insights.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Animais , Software , Análise Espacial , Análise de Célula Única/métodos , Fenótipo , Camundongos , Citometria por Imagem/métodos
9.
Cancer Discov ; 14(6): 1018-1047, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38581685

RESUMO

Understanding the role of the tumor microenvironment (TME) in lung cancer is critical to improving patient outcomes. We identified four histology-independent archetype TMEs in treatment-naïve early-stage lung cancer using imaging mass cytometry in the TRACERx study (n = 81 patients/198 samples/2.3 million cells). In immune-hot adenocarcinomas, spatial niches of T cells and macrophages increased with clonal neoantigen burden, whereas such an increase was observed for niches of plasma and B cells in immune-excluded squamous cell carcinomas (LUSC). Immune-low TMEs were associated with fibroblast barriers to immune infiltration. The fourth archetype, characterized by sparse lymphocytes and high tumor-associated neutrophil (TAN) infiltration, had tumor cells spatially separated from vasculature and exhibited low spatial intratumor heterogeneity. TAN-high LUSC had frequent PIK3CA mutations. TAN-high tumors harbored recently expanded and metastasis-seeding subclones and had a shorter disease-free survival independent of stage. These findings delineate genomic, immune, and physical barriers to immune surveillance and implicate neutrophil-rich TMEs in metastasis. SIGNIFICANCE: This study provides novel insights into the spatial organization of the lung cancer TME in the context of tumor immunogenicity, tumor heterogeneity, and cancer evolution. Pairing the tumor evolutionary history with the spatially resolved TME suggests mechanistic hypotheses for tumor progression and metastasis with implications for patient outcome and treatment. This article is featured in Selected Articles from This Issue, p. 897.


Assuntos
Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Microambiente Tumoral/imunologia , Linfócitos T/imunologia , Células Mieloides/imunologia , Feminino , Masculino , Evasão da Resposta Imune
10.
Cancer Res ; 83(9): 1410-1425, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36853169

RESUMO

Beyond tertiary lymphoid structures, a significant number of immune-rich areas without germinal center-like structures are observed in non-small cell lung cancer. Here, we integrated transcriptomic data and digital pathology images to study the prognostic implications, spatial locations, and constitution of immune rich areas (immune hotspots) in a cohort of 935 patients with lung cancer from The Cancer Genome Atlas. A high intratumoral immune hotspot score, which measures the proportion of immune hotspots interfacing with tumor islands, was correlated with poor overall survival in lung squamous cell carcinoma but not in lung adenocarcinoma. Lung squamous cell carcinomas with high intratumoral immune hotspot scores were characterized by consistent upregulation of B-cell signatures. Spatial statistical analyses conducted on serial multiplex IHC slides further revealed that only 4.87% of peritumoral immune hotspots and 0.26% of intratumoral immune hotspots were tertiary lymphoid structures. Significantly lower densities of CD20+CXCR5+ and CD79b+ B cells and less diverse immune cell interactions were found in intratumoral immune hotspots compared with peritumoral immune hotspots. Furthermore, there was a negative correlation between the percentages of CD8+ T cells and T regulatory cells in intratumoral but not in peritumoral immune hotspots, with tertiary lymphoid structures excluded. These findings suggest that the intratumoral immune hotspots reflect an immunosuppressive niche compared with peritumoral immune hotspots, independent of the distribution of tertiary lymphoid structures. A balance toward increased intratumoral immune hotspots is indicative of a compromised antitumor immune response and poor outcome in lung squamous cell carcinoma. SIGNIFICANCE: Intratumoral immune hotspots beyond tertiary lymphoid structures reflect an immunosuppressive microenvironment, different from peritumoral immune hotspots, warranting further study in the context of immunotherapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Prognóstico , Carcinoma de Células Escamosas/patologia , Pulmão/patologia , Microambiente Tumoral
11.
Nat Med ; 29(4): 833-845, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37045996

RESUMO

Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and 'tumor spread through air spaces' were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Recidiva Local de Neoplasia/patologia , Adenocarcinoma de Pulmão/genética , Progressão da Doença , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
12.
Environ Health ; 11: 89, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23173984

RESUMO

The cause of lung cancer is generally attributed to tobacco smoking. However lung cancer in never smokers accounts for 10 to 25% of all lung cancer cases. Arsenic, asbestos and radon are three prominent non-tobacco carcinogens strongly associated with lung cancer. Exposure to these agents can lead to genetic and epigenetic alterations in tumor genomes, impacting genes and pathways involved in lung cancer development. Moreover, these agents not only exhibit unique mechanisms in causing genomic alterations, but also exert deleterious effects through common mechanisms, such as oxidative stress, commonly associated with carcinogenesis. This article provides a comprehensive review of arsenic, asbestos, and radon induced molecular mechanisms responsible for the generation of genetic and epigenetic alterations in lung cancer. A better understanding of the mode of action of these carcinogens will facilitate the prevention and management of lung cancer related to such environmental hazards.


Assuntos
Arsênio/toxicidade , Amianto/toxicidade , Carcinógenos Ambientais/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Humanos , Radônio
13.
Int J Gynecol Cancer ; 22(9): 1557-63, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23095774

RESUMO

OBJECTIVE: Long noncoding RNAs (lncRNAs) are a unique class of messenger RNA-like transcripts of at least 200 nucleotides in length with no significant protein-coding capacity. Aberrant lncRNA expression is emerging as a major component of the cancer transcriptome. Here, we sought to determine if differential lncRNA expression is a feature of the human cervical intraepithelial neoplasia (CIN) transcriptome. METHODS: Sequence data were derived from 16 long serial analyses of gene expression (L-SAGE) libraries constructed from cervical specimens representing mild (CIN1), moderate (CIN2), and severe (CIN3) histopathologic grades of CIN. A novel lncRNA discovery pipeline was developed to query the expression of lncRNAs within the SAGE data sets. RESULTS: A total of 2,230,370 sequence tags were delineated from the 16 SAGE libraries, representing the expression of 367,482 unique tags at varying abundance. Using a novel stepwise filtering strategy, we analyzed the cervical SAGE libraries and identified the expression profiles of 1056 lncRNAs in the human cervix. We present the first lncRNA expression profile derived from nonneoplastic cervical tissue and establish that changes in lncRNA expression do occur in cervical intraepithelial lesions. Our analysis also shows statistically significant aberrant expression of lncRNAs in the 3 CIN grades, suggesting that these unique noncoding RNA transcripts may contribute to the development and progression of precursor lesions. CONCLUSIONS: Through the analysis of L-SAGE libraries constructed from cervical specimens, we provide the first lncRNA expression profile of the cervix and demonstrate aberrant expression in early-stage neoplasia.


Assuntos
RNA Longo não Codificante/genética , Displasia do Colo do Útero/genética , Neoplasias do Colo do Útero/genética , Adulto , Algoritmos , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Humanos , Análise em Microsséries , Pessoa de Meia-Idade , Adulto Jovem
14.
J Biomed Biotechnol ; 2011: 474632, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21541180

RESUMO

Chemotherapy resistance is a key contributor to the dismal prognoses for lung cancer patients. While the majority of studies have focused on sequence mutations and expression changes in protein-coding genes, recent reports have suggested that microRNA (miRNA) expression changes also play an influential role in chemotherapy response. However, the role of genetic alterations at miRNA loci in the context of chemotherapy response has yet to be investigated. In this study, we demonstrate the application of an integrative, multidimensional approach in order to identify miRNAs that are associated with chemotherapeutic resistance and sensitivity utilizing publicly available drug response, miRNA loci copy number, miRNA expression, and mRNA expression data from independent resources. By instigating a logical stepwise strategy, we have identified specific miRNAs that are associated with resistance to several chemotherapeutic agents and provide a proof of principle demonstration of how these various databases may be exploited to derive relevant pharmacogenomic results.


Assuntos
Dosagem de Genes/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Loci Gênicos/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Front Genet ; 11: 615378, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505435

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) have long been implicated in cancer-associated phenotypes. Recently, a class of lncRNAs, known as cis-acting, have been shown to regulate the expression of neighboring protein-coding genes and may represent undiscovered therapeutic action points. The chromatin architecture modification gene HMGA1 has recently been described to be aberrantly expressed in lung adenocarcinoma (LUAD). However, the mechanisms mediating the expression of HMGA1 in LUAD remain unknown. Here we investigate the deregulation of a putative cis-acting lncRNA in LUAD, and its effect on the oncogene HMGA1. METHODS: LncRNA expression was determined from RNA-sequencing data of tumor and matched non-malignant tissues from 36 LUAD patients. Transcripts with significantly deregulated expression were identified and validated in a secondary LUAD RNA-seq dataset (TCGA). SiRNA-mediated knockdown of a candidate cis-acting lncRNA was performed in BEAS-2B cells. Quantitative real-time PCR was used to observe the effects of lncRNA knockdown on the expression of HMGA1. RESULTS: We identified the lncRNA RP11.513I15.6, which we refer to as HMGA1-lnc, neighboring HMGA1 to be significantly downregulated in both LUAD cohorts. Conversely, we found HMGA1 significantly overexpressed in LUAD and anticorrelated with HMGA1-lnc. In vitro experiments demonstrated siRNA-mediated inhibition of HMGA1-lnc in immortalized non-malignant lung epithelial cells resulted in a significant increase in HMGA1 gene expression. CONCLUSION: Our results suggest that HMGA1-lnc is a novel cis-acting lncRNA that negatively regulates HMGA1 gene expression in lung cells. Further characterization of this regulatory mechanism may advance our understanding of the maintenance of lung cancer phenotypes and uncover a novel therapeutic intervention point for tumors driven by HMGA1.

16.
Sci Rep ; 10(1): 16945, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037279

RESUMO

The tumour immune microenvironment is a crucial mediator of lung tumourigenesis, and characterizing the immune landscape of patient tumours may guide immunotherapy treatment regimens and uncover novel intervention points. We sought to identify the landscape of tumour-infiltrating immune cells in the context of long non-coding RNA (lncRNAs), known regulators of gene expression. We examined the lncRNA profiles of lung adenocarcinoma (LUAD) tumours by interrogating RNA sequencing data from microdissected and non-microdissected samples (BCCRC and TCGA). Subsequently, analysis of single-cell RNA sequencing data from lung tumours and flow-sorted healthy peripheral blood mononuclear cells identified lncRNAs in immune cells, highlighting their biological and prognostic relevance. We discovered lncRNA expression patterns indicative of regulatory relationships with immune-related protein-coding genes, including the relationship between AC008750.1 and NKG7 in NK cells. Activation of NK cells in vitro was sufficient to induce AC008750.1 expression. Finally, siRNA-mediated knockdown of AC008750.1 significantly impaired both the expression of NKG7 and the anti-tumour capacity of NK cells. We present an atlas of cancer-cell extrinsic immune cell-expressed lncRNAs, in vitro evidence for a functional role of lncRNAs in anti-tumour immune activity, which upon further exploration may reveal novel clinical utility as markers of immune infiltration.


Assuntos
Imunidade/genética , Imunidade/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Idoso , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/imunologia , Humanos , Células Matadoras Naturais/imunologia , Pulmão/imunologia , Masculino , Prognóstico , Transcriptoma/genética , Transcriptoma/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
17.
Front Genet ; 10: 138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894871

RESUMO

Transcriptome sequencing has led to the widespread identification of long non-coding RNAs (lncRNAs). Subsequently, these genes have been shown to hold functional importance in human cellular biology, which can be exploited by tumors to drive the hallmarks of cancer. Due to the complex tertiary structure and unknown binding motifs of lncRNAs, there is a growing disparity between the number of lncRNAs identified and those that have been functionally characterized. As such, lncRNAs deregulated in cancer may represent critical components of cancer pathways that could serve as novel therapeutic intervention points. Pseudogenes are non-coding DNA sequences that are defunct relatives of their protein-coding parent genes but retain high sequence similarity. Interestingly, certain lncRNAs expressed from pseudogene loci have been shown to regulate the protein-coding parent genes of these pseudogenes in trans particularly because of this sequence complementarity. We hypothesize that this phenomenon occurs more broadly than previously realized, and that aberrant expression of lncRNAs overlapping pseudogene loci provides an alternative mechanism of cancer gene deregulation. Using RNA-sequencing data from two cohorts of lung adenocarcinoma, each paired with patient-matched non-malignant lung samples, we discovered 104 deregulated pseudogene-derived lncRNAs. Remarkably, many of these deregulated lncRNAs (i) were expressed from the loci of pseudogenes related to known cancer genes, (ii) had expression that significantly correlated with protein-coding parent gene expression, and (iii) had lncRNA protein-coding parent gene expression that was significantly associated with survival. Here, we uncover evidence to suggest the lncRNA-pseudogene-protein-coding gene axis as a prominent mechanism of cancer gene regulation in lung adenocarcinoma, and highlights the clinical utility of exploring the non-coding regions of the cancer transcriptome.

18.
J Immunother Cancer ; 7(1): 13, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651131

RESUMO

BACKGROUND: The tumor microenvironment (TME) is a complex mixture of tumor epithelium, stroma and immune cells, and the immune component of the TME is highly prognostic for tumor progression and patient outcome. In lung cancer, anti-PD-1 therapy significantly improves patient survival through activation of T cell cytotoxicity against tumor cells. Direct contact between CD8+ T cells and target cells is necessary for CD8+ T cell activity, indicating that spatial organization of immune cells within the TME reflects a critical process in anti-tumor immunity. Current immunohistochemistry (IHC) imaging techniques identify immune cell numbers and densities, but lack assessment of cell-cell spatial relationships (or "cell sociology"). Immune functionality, however, is often dictated by cell-to-cell contact and cannot be resolved by simple metrics of cell density (for example, number of cells per mm2). To address this issue, we developed a Hyperspectral Cell Sociology technology platform for the analysis of cell-cell interactions in multi-channel IHC-stained tissue. METHODS: Tissue sections of primary tumors from lung adenocarcinoma patients with known clinical outcome were stained using multiplex IHC for CD3, CD8, and CD79a, and hyperspectral image analysis determined the phenotype of all cells. A Voronoi diagram for each cell was used to approximate cell boundaries, and the cell type of all neighboring cells was identified and quantified. Monte Carlo analysis was used to assess whether cell sociology patterns were likely due to random distributions of the cells. RESULTS: High density of intra-tumoral CD8+ T cells was significantly associated with non-recurrence of tumors. A cell sociology pattern of CD8+ T cells surrounded by tumor cells was more significantly associated with non-recurrence compared to CD8+ T cell density alone. CD3+ CD8- T cells surrounded by tumor cells was also associated with non-recurrence, but at a similar significance as cell density alone. Cell sociology metrics improved recurrence classifications of 12 patients. Monte Carlo re-sampling analysis determined that these cell sociology patterns were non-random. CONCLUSION: Hyperspectral Cell Sociology expands our understanding of the complex interplay between tumor cells and immune infiltrate. This technology could improve predictions of responses to immunotherapy and lead to a deeper understanding of anti-tumor immunity.


Assuntos
Adenocarcinoma de Pulmão/imunologia , Linfócitos B/fisiologia , Comunicação Celular , Neoplasias Pulmonares/imunologia , Linfócitos T/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade
19.
Nat Commun ; 10(1): 5438, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780666

RESUMO

Gene function in cancer is often cell type-specific. The epithelial cell-specific transcription factor ELF3 is a documented tumor suppressor in many epithelial tumors yet displays oncogenic properties in others. Here, we show that ELF3 is an oncogene in the adenocarcinoma subtype of lung cancer (LUAD), providing genetic, functional, and clinical evidence of subtype specificity. We discover a region of focal amplification at chromosome 1q32.1 encompassing the ELF3 locus in LUAD which is absent in the squamous subtype. Gene dosage and promoter hypomethylation affect the locus in up to 80% of LUAD analyzed. ELF3 expression was required for tumor growth and a pan-cancer expression network analysis supports its subtype and tissue specificity. We further show that ELF3 displays strong prognostic value in LUAD but not LUSC. We conclude that, contrary to many other tumors of epithelial origin, ELF3 is an oncogene and putative therapeutic target in LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Carcinoma de Células Escamosas/genética , Proteínas de Ligação a DNA/genética , Neoplasias Pulmonares/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/genética , Células A549 , Animais , Carcinoma/genética , Metilação de DNA , Amplificação de Genes/genética , Dosagem de Genes , Humanos , Camundongos , Transplante de Neoplasias , Mapas de Interação de Proteínas , Transplante Heterólogo
20.
Int J Genomics ; 2018: 6972397, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057905

RESUMO

Despite advancements in therapeutic strategies, diagnostic and prognostic molecular markers of kidney cancer remain scarce, particularly in patients who do not harbour well-defined driver mutations. Recent evidence suggests that a large proportion of the human noncoding transcriptome has escaped detection in early genomic explorations. Here, we undertake a large-scale analysis of small RNA-sequencing data from both clear cell renal cell carcinoma (ccRCC) and nonmalignant samples to generate a robust set of miRNAs that remain unannotated in kidney tissues. We find that these novel kidney miRNAs are also expressed in renal cancer cell lines. Moreover, these sequences are differentially expressed between ccRCC and matched nonmalignant tissues, implicating their involvement in ccRCC biology and potential utility as tumour-specific markers of disease. Indeed, we find some of these miRNAs to be significantly associated with patient survival. Finally, target prediction and subsequent pathway analysis reveals that miRNAs previously unannotated in kidney tissues may target genes involved in ccRCC tumourigenesis and disease biology. Taken together, our results represent a new resource for the study of kidney cancer and underscore the need to characterize the unexplored areas of the transcriptome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA