Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Brain Res ; 241(7): 1757-1768, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37204506

RESUMO

Older adults who report a fear of falling are more likely to subsequently fall, yet, some gait anxiety-related alterations may protect balance. We examined the effect of age on walking in anxiety-inducing virtual reality (VR) settings. We predicted a high elevation-related postural threat would impair gait in older age, and differences in cognitive and physical function would relate to the observed effects. Altogether, 24 adults (age (y) = 49.2 (18.7), 13 women) walked on a 2.2-m walkway at self-selected and fast speeds at low (ground) and high (15 m) VR elevation. Self-reported cognitive and somatic anxiety and mental effort were greater at high elevations (all p < 0.001), but age- and speed-related effects were not observed. At high VR elevations, participants walked slower, took shorter steps, and reduced turning speed (all p < 0.001). Significant interactions with age in gait speed and step length showed that relatively older adults walked slower (ß = - 0.05, p = 0.024) and took shorter steps (ß = - 0.05, p = 0.001) at self-selected speeds at high compared to low elevation settings. The effect of Age on gait speed and step length disappeared between self-selected and fast speeds and at high elevation. At self-selected speeds, older adults took shorter and slower steps at high elevation without changing step width, suggesting that in threatening settings relatively older people change gait parameters to promote stability. At fast speeds, older adults walked like relatively younger adults (or young adults walked like older adults) supporting the notion that people opt to walk faster in a way that still protects balance and stability in threatening settings.


Assuntos
Longevidade , Realidade Virtual , Adulto Jovem , Humanos , Feminino , Idoso , Medo , Caminhada , Marcha , Velocidade de Caminhada , Ansiedade
2.
J Trauma Acute Care Surg ; 93(3): 353-359, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170584

RESUMO

BACKGROUND: Medical educational research highlights the need for high-fidelity, multidisciplinary simulation training to teach complex decision-making skills, such as those taught in Advanced Trauma Life Support (ATLS). This approach is, however, expensive and time-intensive. Virtual reality (VR) education simulation may improve skill acquisition in a cost-effective and time-sensitive manner. We developed a novel trauma VR simulator (TVRSim) for providers to apply ATLS principles. We hypothesized in this pilot study that TVRSim could differentiate practitioner competency with increasing experience and would be well accepted. METHODS: Providers at a Level I trauma center (acute care surgeons, novice (MS4 & PGY1), junior (PGY2 & 3), senior (PGY4-6) residents) ran a blunt, polytrauma VR code. Ten critical decision points were assessed: intubation, cricothyroidotomy, chest tube, intravenous access, focused abdominal sonography for trauma examination, pelvic binder, activation of massive transfusion protocol, administration of hypertonic saline, hyperventilation and decision to go to the operating room (OR). Learner assessment was based on frequency and time to correct decisions. Participant satisfaction was measured using validated surveys. RESULTS: All 31 providers intubated and obtained intravenous access. Novices and juniors frequently failed at hypertonic saline and hyperventilation decisions. Juniors often failed at cricothyroidotomy (60%) and OR (100%) decisions. Mean time to all decisions except going to the OR was longer for all groups compared to acute care surgeons. Mean number of decisions/min was significantly higher for surgeons and seniors compared to juniors and novices. Mortality was 92.3% for novices, 80% for juniors, 25% for seniors and 0% for the attendings. Participants found TVRSim comfortable, easy to use/interact with/performance enhancing, and helped develop skills and learning. CONCLUSIONS: In this pilot study using a sample of convenience, TVRSim was able to discern decision-making abilities among trainees with increasing experience. All trainees felt that the platform enhanced their performance and facilitated skill acquisition and learning. TVRSim could be a useful adjunct to teach and assess ATLS skills. LEVEL OF EVIDENCE: Diagnostic Test or Criteria; Level IV.


Assuntos
Cuidados de Suporte Avançado de Vida no Trauma , Realidade Virtual , Competência Clínica , Simulação por Computador , Humanos , Hiperventilação , Projetos Piloto
3.
Gait Posture ; 77: 6-13, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31951915

RESUMO

The fear of falling, or mobility-related anxiety, profoundly affects gait, but is challenging to study without risk to participants. PURPOSE: To determine the efficacy of using virtual reality (VR) to manipulate illusions of height and consequently, elevated mobility-related anxiety when turning. Moreover, we examined if mobility-related anxiety effects decline across time in VR environments as participants habituate. METHODS: Altogether, 10 healthy participants (five women, mean (standard deviation) age = 28.5 (8.5) years) turned at self-selected and fast speeds on a 2.2 m walkway under two simulated environments: (1) ground elevation; and (2) high elevation (15 m above ground). Peak turning velocity was recorded using inertial sensors and participants rated their cognitive (i.e., worry) and somatic (i.e., tension) anxiety, confidence, and mental effort. RESULTS: A significant Height × Speed × Trial interaction (p = 0.013) was detected for peak turning velocity. On average, the virtual height illusion decreased peak turning velocity, especially at fast speeds. At low elevation, participants decreased speed across trials, but not significantly (p = 0.381), but at high elevation, they significantly increased speed across trials (p = 0.001). At self-selected speeds, no effects were revealed (all p > 0.188) and only effects for Height were observed for fast speeds (p < 0.001). After turning at high elevation, participants reported greater cognitive (p = 0.008) and somatic anxiety (p = 0.007), reduced confidence (p = 0.021), and greater mental effort (p < 0.001) compared to the low elevation. CONCLUSION: VR can safely induce mobility-related anxiety during dynamic motor tasks, and habituation effects from repeated exposure should be carefully considered in experimental designs and analysis.


Assuntos
Acidentes por Quedas/prevenção & controle , Ansiedade/fisiopatologia , Medo , Marcha , Orientação , Equilíbrio Postural , Realidade Virtual , Adulto , Ansiedade/diagnóstico , Simulação por Computador , Estudos de Viabilidade , Feminino , Humanos , Ilusões , Masculino , Amplitude de Movimento Articular , Meio Social , Velocidade de Caminhada , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA