Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nat Immunol ; 19(12): 1341-1351, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374128

RESUMO

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) have been characterized in the context of malignancies. Here we show that PMN-MDSCs can restrain B cell accumulation during central nervous system (CNS) autoimmunity. Ly6G+ cells were recruited to the CNS during experimental autoimmune encephalomyelitis (EAE), interacted with B cells that produced the cytokines GM-CSF and interleukin-6 (IL-6), and acquired properties of PMN-MDSCs in the CNS in a manner dependent on the signal transducer STAT3. Depletion of Ly6G+ cells or dysfunction of Ly6G+ cells through conditional ablation of STAT3 led to the selective accumulation of GM-CSF-producing B cells in the CNS compartment, which in turn promoted an activated microglial phenotype and lack of recovery from EAE. The frequency of CD138+ B cells in the cerebrospinal fluid (CSF) of human subjects with multiple sclerosis was negatively correlated with the frequency of PMN-MDSCs in the CSF. Thus PMN-MDSCs might selectively control the accumulation and cytokine secretion of B cells in the inflamed CNS.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Células Supressoras Mieloides/imunologia , Adolescente , Adulto , Animais , Sistema Nervoso Central/imunologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
2.
Immunity ; 54(11): 2497-2513.e9, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34562377

RESUMO

Innate-like T cell populations expressing conserved TCRs play critical roles in immunity through diverse developmentally acquired effector functions. Focusing on the prototypical lineage of invariant natural killer T (iNKT) cells, we sought to dissect the mechanisms and timing of fate decisions and functional effector differentiation. Utilizing induced expression of the semi-invariant NKT cell TCR on double positive thymocytes, an initially highly synchronous wave of iNKT cell development was triggered by brief homogeneous TCR signaling. After reaching a uniform progenitor state characterized by IL-4 production potential and proliferation, effector subsets emerged simultaneously, but then diverged toward different fates. While NKT17 specification was quickly completed, NKT1 cells slowly differentiated and expanded. NKT2 cells resembled maturing progenitors, which gradually diminished in numbers. Thus, iNKT subset diversification occurs in dividing progenitor cells without acute TCR input but utilizes multiple active cytokine signaling pathways. These data imply a two-step model of iNKT effector differentiation.


Assuntos
Citocinas/metabolismo , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Biomarcadores , Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia
3.
Nature ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987588

RESUMO

Chronic hepatitis B virus (HBV) infection affects 300 million patients worldwide1,2, in whom virus-specific CD8 T cells by still ill-defined mechanisms lose their function and cannot eliminate HBV-infected hepatocytes3-7. Here we demonstrate that a liver immune rheostat renders virus-specific CD8 T cells refractory to activation and leads to their loss of effector functions. In preclinical models of persistent infection with hepatotropic viruses such as HBV, dysfunctional virus-specific CXCR6+ CD8 T cells accumulated in the liver and, as a characteristic hallmark, showed enhanced transcriptional activity of cAMP-responsive element modulator (CREM) distinct from T cell exhaustion. In patients with chronic hepatitis B, circulating and intrahepatic HBV-specific CXCR6+ CD8 T cells with enhanced CREM expression and transcriptional activity were detected at a frequency of 12-22% of HBV-specific CD8 T cells. Knocking out the inhibitory CREM/ICER isoform in T cells, however, failed to rescue T cell immunity. This indicates that CREM activity was a consequence, rather than the cause, of loss in T cell function, further supported by the observation of enhanced phosphorylation of protein kinase A (PKA) which is upstream of CREM. Indeed, we found that enhanced cAMP-PKA-signalling from increased T cell adenylyl cyclase activity augmented CREM activity and curbed T cell activation and effector function in persistent hepatic infection. Mechanistically, CD8 T cells recognizing their antigen on hepatocytes established close and extensive contact with liver sinusoidal endothelial cells, thereby enhancing adenylyl cyclase-cAMP-PKA signalling in T cells. In these hepatic CD8 T cells, which recognize their antigen on hepatocytes, phosphorylation of key signalling kinases of the T cell receptor signalling pathway was impaired, which rendered them refractory to activation. Thus, close contact with liver sinusoidal endothelial cells curbs the activation and effector function of HBV-specific CD8 T cells that target hepatocytes expressing viral antigens by means of the adenylyl cyclase-cAMP-PKA axis in an immune rheostat-like fashion.

4.
EMBO J ; 42(23): e113279, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37881155

RESUMO

The immune system is in place to assist in ensuring tissue homeostasis, which can be easily perturbed by invading pathogens or nonpathogenic stressors causing tissue damage. Extracellular nucleotides are well known to contribute to innate immune signaling specificity and strength, but how their signaling is relayed downstream of cell surface receptors and how this translates into antiviral immunity is only partially understood. Here, we systematically investigated the responses of human macrophages to extracellular nucleotides, focusing on the nucleotide-sensing GPRC receptors of the P2Y family. Time-resolved transcriptomic analysis showed that adenine- and uridine-based nucleotides induce a specific, immediate, and transient cytokine response through the MAPK signaling pathway that regulates transcriptional activation by AP-1. Using receptor trans-complementation, we identified a subset of P2Ys (P2Y1, P2Y2, P2Y6, and P2Y11) that govern inflammatory responses via cytokine induction, while others (P2Y4, P2Y11, P2Y12, P2Y13, and P2Y14) directly induce antiviral responses. Notably, P2Y11 combined both activities, and depletion or inhibition of this receptor in macrophages impaired both inflammatory and antiviral responses. Collectively, these results highlight the underappreciated functions of P2Y receptors in innate immune processes.


Assuntos
Nucleotídeos , Transdução de Sinais , Humanos , Citocinas , Imunidade , Macrófagos/metabolismo , Nucleotídeos/metabolismo , Replicação Viral
5.
Nat Methods ; 21(4): 584-596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409225

RESUMO

Although long noncoding RNAs (lncRNAs) dominate the transcriptome, their functions are largely unexplored. The extensive overlap of lncRNAs with coding and regulatory sequences restricts their systematic interrogation by DNA-directed perturbation. Here we developed genome-scale lncRNA transcriptome screening using Cas13d/CasRx. We show that RNA targeting overcomes limitations inherent to other screening methods, thereby considerably expanding the explorable space of the lncRNAome. By evolving the screening system toward pan-cancer applicability, it supports molecular and phenotypic data integration to contextualize screening hits or infer lncRNA function. We thereby addressed challenges posed by the enormous transcriptome size and tissue specificity through a size-reduced multiplexed gRNA library termed Albarossa, targeting 24,171 lncRNA genes. Its rational design incorporates target prioritization based on expression, evolutionary conservation and tissue specificity, thereby reconciling high discovery power and pan-cancer representation with scalable experimental throughput. Applied across entities, the screening platform identified numerous context-specific and common essential lncRNAs. Our work sets the stage for systematic exploration of lncRNA biology in health and disease.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Transcriptoma , Neoplasias/genética , Neoplasias/metabolismo
6.
Nature ; 594(7862): 246-252, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33845483

RESUMO

The emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology1-10. Integration of such datasets to obtain a holistic view of virus-host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems. Here we report a concurrent multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, we profiled the interactomes of both viruses, as well as their influence on the transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed crosstalk between the perturbations taking place upon infection with SARS-CoV-2 and SARS-CoV at different levels and enabled identification of distinct and common molecular mechanisms of these closely related coronaviruses. The TGF-ß pathway, known for its involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and autophagy was specifically dysregulated by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.innatelab.org ) highlights many hotspots that could be targeted by existing drugs and may be used to guide rational design of virus- and host-directed therapies, which we exemplify by identifying inhibitors of kinases and matrix metalloproteases with potent antiviral effects against SARS-CoV-2.


Assuntos
COVID-19/metabolismo , Interações Hospedeiro-Patógeno , Proteoma/metabolismo , Proteômica , SARS-CoV-2/patogenicidade , Síndrome Respiratória Aguda Grave/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Animais , Antivirais/farmacologia , Autofagia/efeitos dos fármacos , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Conjuntos de Dados como Assunto , Avaliação Pré-Clínica de Medicamentos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Fosforilação , Mapas de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Proteoma/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Fator de Crescimento Transformador beta/metabolismo , Ubiquitinação , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Viroporinas/metabolismo
7.
Nature ; 592(7854): 450-456, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33762733

RESUMO

Hepatocellular carcinoma (HCC) can have viral or non-viral causes1-5. Non-alcoholic steatohepatitis (NASH) is an important driver of HCC. Immunotherapy has been approved for treating HCC, but biomarker-based stratification of patients for optimal response to therapy is an unmet need6,7. Here we report the progressive accumulation of exhausted, unconventionally activated CD8+PD1+ T cells in NASH-affected livers. In preclinical models of NASH-induced HCC, therapeutic immunotherapy targeted at programmed death-1 (PD1) expanded activated CD8+PD1+ T cells within tumours but did not lead to tumour regression, which indicates that tumour immune surveillance was impaired. When given prophylactically, anti-PD1 treatment led to an increase in the incidence of NASH-HCC and in the number and size of tumour nodules, which correlated with increased hepatic CD8+PD1+CXCR6+, TOX+, and TNF+ T cells. The increase in HCC triggered by anti-PD1 treatment was prevented by depletion of CD8+ T cells or TNF neutralization, suggesting that CD8+ T cells help to induce NASH-HCC, rather than invigorating or executing immune surveillance. We found similar phenotypic and functional profiles in hepatic CD8+PD1+ T cells from humans with NAFLD or NASH. A meta-analysis of three randomized phase III clinical trials that tested inhibitors of PDL1 (programmed death-ligand 1) or PD1 in more than 1,600 patients with advanced HCC revealed that immune therapy did not improve survival in patients with non-viral HCC. In two additional cohorts, patients with NASH-driven HCC who received anti-PD1 or anti-PDL1 treatment showed reduced overall survival compared to patients with other aetiologies. Collectively, these data show that non-viral HCC, and particularly NASH-HCC, might be less responsive to immunotherapy, probably owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance. Our data provide a rationale for stratification of patients with HCC according to underlying aetiology in studies of immunotherapy as a primary or adjuvant treatment.


Assuntos
Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Imunoterapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/imunologia , Animais , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese/imunologia , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/imunologia , Progressão da Doença , Humanos , Fígado/imunologia , Fígado/patologia , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Fator de Necrose Tumoral alfa/imunologia
8.
EMBO J ; 41(20): e110871, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36059274

RESUMO

Deubiquitylases (DUBs) are therapeutically amenable components of the ubiquitin machinery that stabilize substrate proteins. Their inhibition can destabilize oncoproteins that may otherwise be undruggable. Here, we screened for DUB vulnerabilities in multiple myeloma, an incurable malignancy with dependency on the ubiquitin proteasome system and identified OTUD6B as an oncogene that drives the G1/S-transition. LIN28B, a suppressor of microRNA biogenesis, is specified as a bona fide cell cycle-specific substrate of OTUD6B. Stabilization of LIN28B drives MYC expression at G1/S, which in turn allows for rapid S-phase entry. Silencing OTUD6B or LIN28B inhibits multiple myeloma outgrowth in vivo and high OTUD6B expression evolves in patients that progress to symptomatic multiple myeloma and results in an adverse outcome of the disease. Thus, we link proteolytic ubiquitylation with post-transcriptional regulation and nominate OTUD6B as a potential mediator of the MGUS-multiple myeloma transition, a central regulator of MYC, and an actionable vulnerability in multiple myeloma and other tumors with an activated OTUD6B-LIN28B axis.


Assuntos
Endopeptidases , MicroRNAs , Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-myc , Proteínas de Ligação a RNA , Ciclo Celular , Linhagem Celular Tumoral , Endopeptidases/genética , Humanos , MicroRNAs/genética , Mieloma Múltiplo/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Ligação a RNA/genética , Ubiquitinas/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(34): e2206208119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969754

RESUMO

Although glioblastoma multiforme (GBM) is not an invariably cold tumor, checkpoint inhibition has largely failed in GBM. In order to investigate T cell-intrinsic properties that contribute to the resistance of GBM to endogenous or therapeutically enhanced adaptive immune responses, we sorted CD4+ and CD8+ T cells from the peripheral blood, normal-appearing brain tissue, and tumor bed of nine treatment-naive patients with GBM. Bulk RNA sequencing of highly pure T cell populations from these different compartments was used to obtain deep transcriptomes of tumor-infiltrating T cells (TILs). While the transcriptome of CD8+ TILs suggested that they were partly locked in a dysfunctional state, CD4+ TILs showed a robust commitment to the type 17 T helper cell (TH17) lineage, which was corroborated by flow cytometry in four additional GBM cases. Therefore, our study illustrates that the brain tumor environment in GBM might instruct TH17 commitment of infiltrating T helper cells. Whether these properties of CD4+ TILs facilitate a tumor-promoting milieu and thus could be a target for adjuvant anti-TH17 cell interventions needs to be further investigated.


Assuntos
Neoplasias Encefálicas , Linfócitos T CD4-Positivos , Glioblastoma , Linfócitos T Auxiliares-Indutores , Neoplasias Encefálicas/patologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Citometria de Fluxo , Glioblastoma/patologia , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos T Auxiliares-Indutores/citologia
10.
Haematologica ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572559

RESUMO

Innate myeloid cells especially neutrophils and their extracellular traps are known to promote intravascular coagulation and thrombosis formation in infections and various other conditions. Innate myeloid cell dependent fibrin formation can support systemic immunity while its dysregulation enhances the severity of infectious diseases. Less is known about the immune mechanisms preventing dysregulation of fibrin homeostasis in infection. During experimental systemic infections local fibrin deposits in the liver microcirculation cause rapid arrest of CD4+ T cells. Arrested T helper cells mostly represent Th17 cells that partially originate from the small intestine. Intravascular fibrin deposits activate mouse and human CD4+ T cells which can be mediated by direct fibrin - CD4+ T cell interactions. Activated CD4+ T cells suppress fibrin deposition and microvascular thrombosis by directly counteracting coagulation activation by neutrophils and classical monocytes. T cell activation, which is initially triggered by IL- 12p40- and MHC-II dependent mechanisms, enhances intravascular fibrinolysis via LFA-1. Moreover, CD4+ T cells disfavor the association of the fibrinolysis inhibitor TAFI with fibrin whereby fibrin deposition is increased by TAFI in the absence but not presence of T cells. In human infections thrombosis development is inversely related to microvascular levels of CD4+ T cells. Thus, fibrin promotes LFA-1 dependent T helper cell activation in infections which drives a negative feedback cycle that rapidly restricts intravascular fibrin and thrombosis development.

11.
Nature ; 554(7690): 62-68, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364867

RESUMO

The poor correlation of mutational landscapes with phenotypes limits our understanding of the pathogenesis and metastasis of pancreatic ductal adenocarcinoma (PDAC). Here we show that oncogenic dosage-variation has a critical role in PDAC biology and phenotypic diversification. We find an increase in gene dosage of mutant KRAS in human PDAC precursors, which drives both early tumorigenesis and metastasis and thus rationalizes early PDAC dissemination. To overcome the limitations posed to gene dosage studies by the stromal richness of PDAC, we have developed large cell culture resources of metastatic mouse PDAC. Integration of cell culture genomes, transcriptomes and tumour phenotypes with functional studies and human data reveals additional widespread effects of oncogenic dosage variation on cell morphology and plasticity, histopathology and clinical outcome, with the highest KrasMUT levels underlying aggressive undifferentiated phenotypes. We also identify alternative oncogenic gains (Myc, Yap1 or Nfkb2), which collaborate with heterozygous KrasMUT in driving tumorigenesis, but have lower metastatic potential. Mechanistically, different oncogenic gains and dosages evolve along distinct evolutionary routes, licensed by defined allelic states and/or combinations of hallmark tumour suppressor alterations (Cdkn2a, Trp53, Tgfß-pathway). Thus, evolutionary constraints and contingencies direct oncogenic dosage gain and variation along defined routes to drive the early progression of PDAC and shape its downstream biology. Our study uncovers universal principles of Ras-driven oncogenesis that have potential relevance beyond pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Evolução Molecular , Dosagem de Genes , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Animais , Carcinogênese/genética , Proteínas de Ciclo Celular , Inibidor p16 de Quinase Dependente de Ciclina/genética , Progressão da Doença , Feminino , Genes myc , Genes p53 , Humanos , Masculino , Camundongos , Mutação , Subunidade p52 de NF-kappa B/genética , Metástase Neoplásica/genética , Proteínas Nucleares/genética , Fenótipo , Fosfoproteínas/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Fator de Crescimento Transformador beta1/genética , Proteínas de Sinalização YAP
12.
Eur J Immunol ; 52(1): 85-95, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668583

RESUMO

Regulatory T cells (Tregs) are essential for the inhibition of immunity and the maintenance of tissue homeostasis. Signals from the T-cell antigen receptor (TCR) are critical for early Treg development, their expansion, and inhibitory activity. Although TCR-engaged activation of the paracaspase MALT1 is important for these Treg activities, the MALT1 effector pathways in Tregs remain ill-defined. Here, we demonstrate that MALT1 protease activity controls the TCR-induced upregulation of the transcription factor MYC and the subsequent expression of MYC target genes in Tregs. These mechanisms are important for Treg-intrinsic mitochondrial function, optimal respiratory capacity, and homeostatic Treg proliferation. Consistently, conditional deletion of Myc in Tregs results similar to MALT1 inactivation in a lethal autoimmune inflammatory syndrome. Together, these results identify a MALT1 protease-mediated link between TCR signaling in Tregs and MYC control that coordinates metabolism and Treg expansion for the maintenance of immune homeostasis.


Assuntos
Proliferação de Células , Ativação Linfocitária , Mitocôndrias/imunologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/imunologia , Proteínas Proto-Oncogênicas c-myc/imunologia , Linfócitos T Reguladores/imunologia , Animais , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteínas Proto-Oncogênicas c-myc/genética
13.
Haematologica ; 108(2): 490-501, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950533

RESUMO

Remodeling of the bone marrow microenvironment in chronic inflammation and in aging reduces hematopoietic stem cell (HSC) function. To assess the mechanisms of this functional decline of HSC and find strategies to counteract it, we established a model in which the Sfrp1 gene was deleted in Osterix+ osteolineage cells (OS1Δ/Δ mice). HSC from these mice showed severely diminished repopulating activity with associated DNA damage, enriched expression of the reactive oxygen species pathway and reduced single-cell proliferation. Interestingly, not only was the protein level of Catenin beta-1 (bcatenin) elevated, but so was its association with the phosphorylated co-activator p300 in the nucleus. Since these two proteins play a key role in promotion of differentiation and senescence, we inhibited in vivo phosphorylation of p300 through PP2A-PR72/130 by administration of IQ-1 in OS1Δ/Δ mice. This treatment not only reduced the b-catenin/phosphop300 association, but also decreased nuclear p300. More importantly, in vivo IQ-1 treatment fully restored HSC repopulating activity of the OS1Δ/Δ mice. Our findings show that the osteoprogenitor Sfrp1 is essential for maintaining HSC function. Furthermore, pharmacological downregulation of the nuclear b-catenin/phospho-p300 association is a new strategy to restore poor HSC function.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Camundongos , Animais , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Medula Óssea/metabolismo , Envelhecimento , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
14.
Gastroenterology ; 160(1): 346-361.e24, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007300

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibroblast-rich desmoplastic stroma. Cancer-associated fibroblasts (CAFs) have been shown to display a high degree of interconvertible states including quiescent, inflammatory, and myofibroblastic phenotypes; however, the mechanisms by which this plasticity is achieved are poorly understood. Here, we aim to elucidate the role of CAF plasticity and its impact on PDAC biology. METHODS: To investigate the role of mesenchymal plasticity in PDAC progression, we generated a PDAC mouse model in which CAF plasticity is modulated by genetic depletion of the transcription factor Prrx1. Primary pancreatic fibroblasts from this mouse model were further characterized by functional in vitro assays. To characterize the impact of CAFs on tumor differentiation and response to chemotherapy, various coculture experiments were performed. In vivo, tumors were characterized by morphology, extracellular matrix composition, and tumor dissemination and metastasis. RESULTS: Our in vivo findings showed that Prrx1-deficient CAFs remain constitutively activated. Importantly, this CAF phenotype determines tumor differentiation and disrupts systemic tumor dissemination. Mechanistically, coculture experiments of tumor organoids and CAFs showed that CAFs shape the epithelial-to-mesenchymal phenotype and confer gemcitabine resistance of PDAC cells induced by CAF-derived hepatocyte growth factor. Furthermore, gene expression analysis showed that patients with pancreatic cancer with high stromal expression of Prrx1 display the squamous, most aggressive, subtype of PDAC. CONCLUSIONS: Here, we define that the Prrx1 transcription factor is critical for tuning CAF activation, allowing a dynamic switch between a dormant and an activated state. This work shows that Prrx1-mediated CAF plasticity has significant impact on PDAC biology and therapeutic resistance.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/patologia , Proteínas de Homeodomínio/fisiologia , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/patologia , Animais , Plasticidade Celular/fisiologia , Modelos Animais de Doenças , Camundongos
15.
Gastroenterology ; 161(5): 1601-1614.e23, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34303658

RESUMO

BACKGROUND & AIMS: Promoted by pancreatitis, oncogenic KrasG12D triggers acinar cells' neoplastic transformation through acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia. Anterior gradient 2 (Agr2), a known inhibitor of p53, is detected at early stage of pancreatic ductal adenocarcinoma (PDAC) development. RNA polymerase II (RNAPII) is a key nuclear enzyme; regulation of its nuclear localization in mammalian cells represents a potential therapeutic target. METHODS: A mouse model of inflammation-accelerated KrasG12D-driven ADM and pancreatic intraepithelial neoplasia development was used. Pancreas-specific Agr2 ablation was performed to access its role in pancreatic carcinogenesis. Hydrophobic hexapeptides loaded in liposomes were developed to disrupt Agr2-RNAPII complex. RESULTS: We found that Agr2 is up-regulated in ADM-to-pancreatic intraepithelial neoplasia transition in inflammation and KrasG12D-driven early pancreatic carcinogenesis. Genetic ablation of Agr2 specifically blocks this metaplastic-to-neoplastic process. Mechanistically, Agr2 directs the nuclear import of RNAPII via its C-terminal nuclear localization signal, undermining the ATR-dependent p53 activation in ADM lesions. Because Agr2 binds to the largest subunit of RNAPII in a peptide motif-dependent manner, we developed a hexapeptide to interfere with the nuclear import of RNAPII by competitively disrupting the Agr2-RNAPII complex. This novel hexapeptide leads to dysfunction of RNAPII with concomitant activation of DNA damage response in early neoplastic lesions; hence, it dramatically compromises PDAC initiation in vivo. Moreover, the hexapeptide sensitizes PDAC cells and patient-derived organoids harboring wild-type p53 to RNAPII inhibitors and first-line chemotherapeutic agents in vivo. Of note, this therapeutic effect is efficient across various cancer types. CONCLUSIONS: Agr2 is identified as a novel adaptor protein for nuclear import of RNAPII in mammalian cells. Also, we provide genetic evidence defining Agr2-dependent nuclear import of RNAPII as a pharmaceutically accessible target for prevention and treatment in PDAC in the context of wild-type p53.


Assuntos
Carcinoma in Situ/enzimologia , Carcinoma Ductal Pancreático/enzimologia , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias Pancreáticas/enzimologia , RNA Polimerase II/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Antineoplásicos/farmacologia , Carcinoma in Situ/tratamento farmacológico , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Metaplasia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mucoproteínas/genética , Mutação , Oligopeptídeos/farmacologia , Proteínas Oncogênicas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Polimerase II/genética , Proteína Supressora de Tumor p53/genética
16.
Bioorg Chem ; 119: 105505, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838332

RESUMO

Targeted protein degradation offers new opportunities to inactivate cancer drivers and has successfully entered the clinic. Ways to induce selective protein degradation include proteolysis targeting chimera (PROTAC) technology and immunomodulatory (IMiDs) / next-generation Cereblon (CRBN) E3 ligase modulating drugs (CELMoDs). Here, we aimed to develop a MYC PROTAC based on the MYC-MAX dimerization inhibitor 10058-F4 derivative 28RH and Thalidomide, called MDEG-541. We show that a subgroup of gastrointestinal cancer cell lines and primary patient-derived organoids are MDEG-541 sensitive. Although MYC expression was regulated in a CRBN-, proteasome- and ubiquitin-dependent manner, we provide evidence that MDEG-541 induced the degradation of CRBN neosubstrates, including G1 to S phase transition 1/2 (GSPT1/2) and the Polo-like kinase 1 (PLK1). In sum, we have established a CRBN-dependent degrader of relevant cancer targets with activity in gastrointestinal cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Talidomida/farmacologia , Tiazóis/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Talidomida/síntese química , Talidomida/química , Tiazóis/síntese química , Tiazóis/química , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/metabolismo
17.
Gut ; 70(4): 743-760, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32873698

RESUMO

OBJECTIVE: ATM serine/threonine kinase (ATM) is the most frequently mutated DNA damage response gene, involved in homologous recombination (HR), in pancreatic ductal adenocarcinoma (PDAC). DESIGN: Combinational synergy screening was performed to endeavour a genotype-tailored targeted therapy. RESULTS: Synergy was found on inhibition of PARP, ATR and DNA-PKcs (PAD) leading to synthetic lethality in ATM-deficient murine and human PDAC. Mechanistically, PAD-induced PARP trapping, replication fork stalling and mitosis defects leading to P53-mediated apoptosis. Most importantly, chemical inhibition of ATM sensitises human PDAC cells toward PAD with long-term tumour control in vivo. Finally, we anticipated and elucidated PARP inhibitor resistance within the ATM-null background via whole exome sequencing. Arising cells were aneuploid, underwent epithelial-mesenchymal-transition and acquired multidrug resistance (MDR) due to upregulation of drug transporters and a bypass within the DNA repair machinery. These functional observations were mirrored in copy number variations affecting a region on chromosome 5 comprising several of the upregulated MDR genes. Using these findings, we ultimately propose alternative strategies to overcome the resistance. CONCLUSION: Analysis of the molecular susceptibilities triggered by ATM deficiency in PDAC allow elaboration of an efficient mutation-specific combinational therapeutic approach that can be also implemented in a genotype-independent manner by ATM inhibition.


Assuntos
Adenocarcinoma/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Carcinoma Ductal Pancreático/genética , Recombinação Homóloga , Neoplasias Pancreáticas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Adenocarcinoma/tratamento farmacológico , Animais , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular , Variações do Número de Cópias de DNA , Dano ao DNA , Reparo do DNA , Resistência a Múltiplos Medicamentos/genética , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal , Genótipo , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Prognóstico
18.
Carcinogenesis ; 42(8): 1068-1078, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33878160

RESUMO

Barrett's esophagus (BE) is the main known precursor condition of esophageal adenocarcinoma (EAC). BE is defined by the presence of metaplasia above the normal squamous columnar junction and has mainly been attributed to gastroesophageal reflux disease and chronic reflux esophagitis. Thus, the rising incidence of EAC in the Western world is probably mediated by chronic esophageal inflammation, secondary to gastroesophageal reflux disease in combination with environmental risk factors such as a Western diet and obesity. However, (at present) risk prediction tools and endoscopic surveillance have shown limited effectiveness. Chemoprevention as an adjunctive approach remains an attractive option to reduce the incidence of neoplastic disease. Here, we investigate the feasibility of chemopreventive approaches in BE and EAC via inhibition of inflammatory signaling in a transgenic mouse model of BE and EAC (L2-IL1B mice), with accelerated tumor formation on a high-fat diet (HFD). L2-IL1B mice were treated with the IL-1 receptor antagonist Anakinra and the nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin or Sulindac. Interleukin-1b antagonism reduced tumor progression in L2-IL1B mice with or without a HFD, whereas both NSAIDs were effective chemoprevention agents in the accelerated HFD-fed L2-IL1B mouse model. Sulindac treatment also resulted in a marked change in the immune profile of L2-IL1B mice. In summary, anti-inflammatory treatment of HFD-treated L2-IL1B mice acted protectively on disease progression. These results from a mouse model of BE support results from clinical trials that suggest that anti-inflammatory medication may be effective in the chemoprevention of EAC.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Quimioprevenção/métodos , Sulindaco/uso terapêutico , Adenocarcinoma , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Neoplasias Esofágicas , Camundongos , Fenótipo
19.
Am J Pathol ; 190(2): 358-371, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31783007

RESUMO

Liver sinusoidal endothelial cells (LSECs) control organ functions, metabolism, and development through the secretion of angiokines. LSECs express hepatocyte growth factor (Hgf), which is involved in prenatal development, metabolic homeostasis, and liver regeneration. This study aimed to elucidate the precise contribution of LSEC-derived Hgf in physiological homeostasis and liver regeneration. Stab2-iCretg/wt;Hgffl/fl (HgfΔLSEC) mice were generated to abrogate Hgf expression selectively in LSECs from early fetal development onwards, to study global development, metabolic and endothelial zonation, and organ functions as well as liver regeneration in response to 70% partial hepatectomy (PH). Although zonation and liver/body weight ratios were not altered, total body weight and total liver weight were reduced in HgfΔLSEC. Necrotic organ damage was more marked in HgfΔLSEC mice, and regeneration was delayed 72 hours after PH. This was associated with decreased hepatocyte proliferation at 48 hours after PH. Molecularly, HgfΔLSEC mice showed down-regulation of Hgf/c-Met signaling and decreased expression of Deptor in hepatocytes. In vitro knockdown of Deptor was associated with decreased proliferation. Therefore, angiocrine Hgf controls hepatocyte proliferation and susceptibility to necrosis after partial hepatectomy via the Hgf/c-Met axis involving Deptor to prevent excessive organ damage.


Assuntos
Tamanho Corporal , Proliferação de Células , Fator de Crescimento de Hepatócito/fisiologia , Hepatócitos/citologia , Hepatopatias/prevenção & controle , Regeneração Hepática , Organogênese/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/fisiologia , Endotélio/citologia , Endotélio/metabolismo , Feminino , Hepatectomia , Hepatócitos/fisiologia , Homeostase , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Camundongos , Camundongos Knockout , Comunicação Parácrina , Transdução de Sinais
20.
Int J Cancer ; 147(6): 1715-1731, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32147820

RESUMO

Epithelial-mesenchymal transition (EMT) is a cell plasticity process required for metastasis and chemoresistance of carcinoma cells. We report a crucial role of the signal adaptor proteins CRK and CRKL in promoting EMT and tumor aggressiveness, as well as resistance against chemotherapy in colorectal and pancreatic carcinoma. Genetic loss of either CRKL or CRK partially counteracted EMT in three independent cancer cell lines. Strikingly, complete loss of the CRK family shifted cells strongly toward the epithelial phenotype. Cells exhibited greatly increased E-cadherin and grew as large, densely packed clusters, completely lacked invasiveness and the ability to undergo EMT induced by cytokines or genetic activation of SRC. Furthermore, CRK family-deficiency significantly reduced cell survival, proliferation and chemoresistance, as well as ERK1/2 phosphorylation and c-MYC protein levels. In accordance, MYC-target gene expression was identified as novel hallmark process positively regulated by CRK family proteins. Mechanistically, CRK proteins were identified as pivotal amplifiers of SRC/FAK signaling at focal adhesions, mediated through a novel positive feedback loop depending on RAP1. Expression of the CRK family and the EMT regulator ZEB1 was significantly correlated in samples from colorectal cancer patients, especially in invasive regions. Further, high expression of CRK family genes was significantly associated with reduced survival in locally advanced colorectal cancer, as well as in pan-cancer datasets from the TCGA project. Thus, CRK family adaptor proteins are promising therapeutic targets to counteract EMT, chemoresistance, metastasis formation and minimal residual disease. As proof of concept, CRK family-mediated oncogenic signaling was successfully inhibited by a peptide-based inhibitor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-crk/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Idoso , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Colo/patologia , Colo/cirurgia , Neoplasias Colorretais/terapia , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/patologia , Humanos , Masculino , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-crk/antagonistas & inibidores , RNA-Seq , Reto/patologia , Reto/cirurgia , Transdução de Sinais/efeitos dos fármacos , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA