Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 8(18): 9241-9258, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30377497

RESUMO

The functioning of marine protected areas (MPAs) designated for marine megafauna has been criticized due to the high mobility and dispersal potential of these taxa. However, dispersal within a network of small MPAs can be beneficial as connectivity can result in increased effective population size, maintain genetic diversity, and increase robustness to ecological and environmental changes making populations less susceptible to stochastic genetic and demographic effects (i.e., Allee effect). Here, we use both genetic and photo-identification methods to quantify gene flow and demographic dispersal between MPAs of a highly mobile marine mammal, the bottlenose dolphin Tursiops truncatus. We identify three populations in the waters of western Ireland, two of which have largely nonoverlapping core coastal home ranges and are each strongly spatially associated with specific MPAs. We find high site fidelity of individuals within each of these two coastal populations to their respective MPA. We also find low levels of demographic dispersal between the populations, but it remains unclear whether any new gametes are exchanged between populations through these migrants (genetic dispersal). The population sampled in the Shannon Estuary has a low estimated effective population size and appears to be genetically isolated. The second coastal population, sampled outside of the Shannon, may be demographically and genetically connected to other coastal subpopulations around the coastal waters of the UK. We therefore recommend that the methods applied here should be used on a broader geographically sampled dataset to better assess this connectivity.

2.
PLoS One ; 10(4): e0122668, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853823

RESUMO

Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations.


Assuntos
Golfinho Nariz-de-Garrafa/fisiologia , Hierarquia Social , Comportamento Social , Animais , Oceano Atlântico , Golfinho Nariz-de-Garrafa/genética , DNA Mitocondrial/genética , Ecossistema , Genética Populacional , Humanos , Repetições de Microssatélites/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA