RESUMO
Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.
Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/imunologia , Linfócitos T/imunologia , Biomarcadores Tumorais/metabolismo , Antígenos CD8/metabolismo , Quimiocina CXCL13/metabolismo , Cromossomos Humanos Par 9/genética , Estudos de Coortes , Ciclina D1/genética , Variações do Número de Cópias de DNA/genética , Exoma/genética , Amplificação de Genes , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Análise Multivariada , Mutação/genética , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Receptores CCR5/metabolismo , Linfócitos T/efeitos dos fármacos , Carga Tumoral/genéticaRESUMO
The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a 'bridge' of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells. This multicellular process is initiated by hypoxia, selectively sensed by macrophages within the bridge, which via VEGF-A secretion induce a polarized vasculature that relieves the hypoxia. Schwann cells then use the blood vessels as "tracks" to cross the bridge taking regrowing axons with them. Importantly, disrupting the organization of the newly formed blood vessels in vivo, either by inhibiting the angiogenic signal or by re-orienting them, compromises Schwann cell directionality resulting in defective nerve repair. This study provides important insights into how the choreography of multiple cell-types is required for the regeneration of an adult tissue.
Assuntos
Vasos Sanguíneos/metabolismo , Macrófagos/metabolismo , Nervos Periféricos/fisiologia , Células de Schwann/metabolismo , Animais , Axônios/metabolismo , Hipóxia Celular , Células Endoteliais/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Neovascularização Fisiológica , Ratos , Ratos Sprague-Dawley , Regeneração , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus.
Assuntos
Linfócitos B/citologia , Linhagem da Célula/imunologia , Células Progenitoras Linfoides/citologia , Células Mieloides/citologia , Células Precursoras de Linfócitos B/citologia , Linfócitos T/citologia , Animais , Separação Celular , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células Progenitoras Linfoides/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Timo/citologiaRESUMO
The linear ubiquitin chain assembly complex (LUBAC) is required for optimal gene activation and prevention of cell death upon activation of immune receptors, including TNFR1 1 . Deficiency in the LUBAC components SHARPIN or HOIP in mice results in severe inflammation in adulthood or embryonic lethality, respectively, owing to deregulation of TNFR1-mediated cell death2-8. In humans, deficiency in the third LUBAC component HOIL-1 causes autoimmunity and inflammatory disease, similar to HOIP deficiency, whereas HOIL-1 deficiency in mice was reported to cause no overt phenotype9-11. Here we show, by creating HOIL-1-deficient mice, that HOIL-1 is as essential for LUBAC function as HOIP, albeit for different reasons: whereas HOIP is the catalytically active component of LUBAC, HOIL-1 is required for LUBAC assembly, stability and optimal retention in the TNFR1 signalling complex, thereby preventing aberrant cell death. Both HOIL-1 and HOIP prevent embryonic lethality at mid-gestation by interfering with aberrant TNFR1-mediated endothelial cell death, which only partially depends on RIPK1 kinase activity. Co-deletion of caspase-8 with RIPK3 or MLKL prevents cell death in Hoil-1-/- (also known as Rbck1-/-) embryos, yet only the combined loss of caspase-8 with MLKL results in viable HOIL-1-deficient mice. Notably, triple-knockout Ripk3-/-Casp8-/-Hoil-1-/- embryos die at late gestation owing to haematopoietic defects that are rescued by co-deletion of RIPK1 but not MLKL. Collectively, these results demonstrate that both HOIP and HOIL-1 are essential LUBAC components and are required for embryogenesis by preventing aberrant cell death. Furthermore, they reveal that when LUBAC and caspase-8 are absent, RIPK3 prevents RIPK1 from inducing embryonic lethality by causing defects in fetal haematopoiesis.
Assuntos
Proteínas de Transporte/metabolismo , Morte Celular , Desenvolvimento Embrionário , Hematopoese , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular/genética , Perda do Embrião/genética , Desenvolvimento Embrionário/genética , Células Endoteliais/citologia , Feminino , Hematopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genéticaRESUMO
Innate lymphoid cells are central to the regulation of immunity at mucosal barrier sites, with group 2 innate lymphoid cells (ILC2s) being particularly important in type 2 immunity. In this study, we demonstrate that microRNA(miR)-142 plays a critical, cell-intrinsic role in the homeostasis and function of ILC2s. Mice deficient for miR-142 expression demonstrate an ILC2 progenitor-biased development in the bone marrow, and along with peripheral ILC2s at mucosal sites, these cells display a greatly altered phenotype based on surface marker expression. ILC2 proliferative and effector functions are severely dysfunctional following Nippostrongylus brasiliensis infection, revealing a critical role for miR-142 isoforms in ILC2-mediated immune responses. Mechanistically, Socs1 and Gfi1 expression are regulated by miR-142 isoforms in ILC2s, impacting ILC2 phenotypes as well as the proliferative and effector capacity of these cells. The identification of these novel pathways opens potential new avenues to modulate ILC2-dependent immune functions.
Assuntos
Linfócitos/imunologia , MicroRNAs/imunologia , Animais , Células HEK293 , Homeostase , Humanos , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genéticaRESUMO
Metabolic changes within the cell and its niche affect cell fate and are involved in many diseases and disorders including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). KSHV latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, these miRNAs are responsible for inducing the Warburg effect in infected cells. Here we identify a novel mechanism enabling KSHV to manipulate the metabolic nature of the tumour microenvironment. We demonstrate that KSHV infected cells specifically transfer the virus-encoded microRNAs to surrounding cells via exosomes. This flow of genetic information results in a metabolic shift toward aerobic glycolysis in the surrounding non-infected cells. Importantly, this exosome-mediated metabolic reprogramming of neighbouring cells supports the growth of infected cells, thereby contributing to viral fitness. Finally, our data show that this miRNA transfer-based regulation of cell metabolism is a general mechanism used by other herpesviruses, such as EBV, as well as for the transfer of non-viral onco-miRs. This exosome-based crosstalk provides viruses with a mechanism for non-infectious transfer of genetic material without production of new viral particles, which might expose them to the immune system. We suggest that viruses and cancer cells use this mechanism to shape a specific metabolic niche that will contribute to their fitness.
Assuntos
Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/patogenicidade , Sarcoma de Kaposi/virologia , Microambiente Tumoral/fisiologia , Virulência/fisiologia , Western Blotting , Linhagem Celular , Exoma/fisiologia , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/fisiologia , Humanos , MicroRNAs/genética , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , RNA Viral/genética , Sarcoma de Kaposi/metabolismoRESUMO
Hematopoietic stem cells (HSCs) emerge during development via an endothelial-to-hematopoietic transition from hemogenic endothelium of the dorsal aorta (DA). Using in situ hybridization and analysis of a knock-in RedStar reporter, we show that the transcriptional regulator Hhex is expressed in endothelium of the dorsal aorta (DA) and in clusters of putative HSCs as they are specified during murine development. We exploited this observation, using the Hhex locus to define cis regulatory elements, enhancers and interacting transcription factors that are both necessary and sufficient to support gene expression in the emerging HSC. We identify an evolutionarily conserved non-coding region (ECR) in the Hhex locus with the capacity to bind the hematopoietic-affiliated transcriptional regulators Gata2, SCL, Fli1, Pu.1 and Ets1/2. This region is sufficient to drive the expression of a transgenic GFP reporter in the DA endothelium and intra-aortic hematopoietic clusters. GFP-positive AGM cells co-expressed HSC-associated markers c-Kit, CD34, VE-Cadherin, and CD45, and were capable of multipotential differentiation and long term engraftment when transplanted into myelo-ablated recipients. The Hhex ECR was also sufficient to drive expression at additional blood sites including the yolk sac blood islands, fetal liver, vitelline and umbilical arteries and the adult bone marrow, suggesting a common mechanism for Hhex regulation throughout ontogenesis of the blood system. To explore the physiological requirement for the Hhex ECR region during hematoendothelial development, we deleted the ECR element from the endogenous locus in the context of a targeted Hhex-RedStar reporter allele. Results indicate a specific requirement for the ECR in blood-associated Hhex expression during development and further demonstrate a requirement for this region in the adult HSC compartment. Taken together, our results identified the ECR region as an enhancer both necessary and sufficient for gene expression in HSC development and homeostasis. The Hhex ECR thus appears to be a core node for the convergence of the transcription factor network that governs the emergence of HSCs.
Assuntos
Regulação da Expressão Gênica , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Compartimento Celular , Linhagem da Célula/genética , Ensaio de Unidades Formadoras de Colônias , Sequência Conservada/genética , Embrião de Mamíferos/metabolismo , Loci Gênicos , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genéticaRESUMO
We identify a mutation (D262N) in the erythroid-affiliated transcriptional repressor GFI1B, in an acute myeloid leukemia (AML) patient with antecedent myelodysplastic syndrome (MDS). The GFI1B-D262N mutant functionally antagonizes the transcriptional activity of wild-type GFI1B. GFI1B-D262N promoted myelomonocytic versus erythroid output from primary human hematopoietic precursors and enhanced cell survival of both normal and MDS derived precursors. Re-analysis of AML transcriptome data identifies a distinct group of patients in whom expression of wild-type GFI1B and SPI1 (PU.1) have an inverse pattern. In delineating this GFI1B-SPI1 relationship we show that (i) SPI1 is a direct target of GFI1B, (ii) expression of GFI1B-D262N produces elevated expression of SPI1, and (iii) SPI1-knockdown restores balanced lineage output from GFI1B-D262N-expressing precursors. These results table the SPI1-GFI1B transcriptional network as an important regulatory axis in AML as well as in the development of erythroid versus myelomonocytic cell fate.
Assuntos
Redes Reguladoras de Genes , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Transativadores/genética , Sequência de Aminoácidos , Animais , Antígenos CD34/metabolismo , Sequência de Bases , Diferenciação Celular , Linhagem da Célula , Sobrevivência Celular , Sangue Fetal/citologia , Citometria de Fluxo , Regulação Leucêmica da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Dados de Sequência Molecular , Síndromes Mielodisplásicas/metabolismo , Mutação Puntual , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Transativadores/metabolismo , Dedos de ZincoRESUMO
Jarid1b/KDM5b is a histone demethylase that regulates self-renewal and differentiation in stem cells and cancer; however, its function in hematopoiesis is unclear. Here, we find that Jarid1b is highly expressed in primitive hematopoietic compartments and is overexpressed in acute myeloid leukemias. Constitutive genetic deletion of Jarid1b did not impact steady-state hematopoiesis. In contrast, acute deletion of Jarid1b from bone marrow increased peripheral blood T cells and, following secondary transplantation, resulted in loss of bone marrow reconstitution. Our results reveal that deletion of Jarid1b compromises hematopoietic stem cell (HSC) self-renewal capacity and suggest that Jarid1b is a positive regulator of HSC potential.
Assuntos
Proliferação de Células/genética , Proteínas de Ligação a DNA/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Histona Desmetilases com o Domínio Jumonji/fisiologia , Animais , Diferenciação Celular/genética , Divisão Celular/genética , Proteínas de Ligação a DNA/genética , Hematopoese/genética , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos , Camundongos KnockoutRESUMO
Little is known of the genetic architecture of cancer at the subclonal and single-cell level or in the cells responsible for cancer clone maintenance and propagation. Here we have examined this issue in childhood acute lymphoblastic leukaemia in which the ETV6-RUNX1 gene fusion is an early or initiating genetic lesion followed by a modest number of recurrent or 'driver' copy number alterations. By multiplexing fluorescence in situ hybridization probes for these mutations, up to eight genetic abnormalities can be detected in single cells, a genetic signature of subclones identified and a composite picture of subclonal architecture and putative ancestral trees assembled. Subclones in acute lymphoblastic leukaemia have variegated genetics and complex, nonlinear or branching evolutionary histories. Copy number alterations are independently and reiteratively acquired in subclones of individual patients, and in no preferential order. Clonal architecture is dynamic and is subject to change in the lead-up to a diagnosis and in relapse. Leukaemia propagating cells, assayed by serial transplantation in NOD/SCID IL2Rγ(null) mice, are also genetically variegated, mirroring subclonal patterns, and vary in competitive regenerative capacity in vivo. These data have implications for cancer genomics and for the targeted therapy of cancer.
Assuntos
Células Clonais/patologia , Variação Genética/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Animais , Células Clonais/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA , Progressão da Doença , Genótipo , Humanos , Imunofenotipagem , Hibridização in Situ Fluorescente , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Proteínas de Fusão Oncogênica/genéticaRESUMO
Altered cell metabolism is inherently connected with pathological conditions including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). KS tumour cells display features of lymphatic endothelial differentiation and in their vast majority are latently infected with KSHV, while a small number are lytically infected, producing virions. Latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, the metabolic properties of KSHV-infected cells closely resemble the metabolic hallmarks of cancer cells. However, how and why KSHV alters host cell metabolism remains poorly understood. Here, we investigated the effect of KSHV infection on the metabolic profile of primary dermal microvascular lymphatic endothelial cells (LEC) and the functional relevance of this effect. We found that the KSHV microRNAs within the oncogenic cluster collaborate to decrease mitochondria biogenesis and to induce aerobic glycolysis in infected cells. KSHV microRNAs expression decreases oxygen consumption, increase lactate secretion and glucose uptake, stabilize HIF1α and decreases mitochondria copy number. Importantly this metabolic shift is important for latency maintenance and provides a growth advantage. Mechanistically we show that KSHV alters host cell energy metabolism through microRNA-mediated down regulation of EGLN2 and HSPA9. Our data suggest that the KSHV microRNAs induce a metabolic transformation by concurrent regulation of two independent pathways; transcriptional reprograming via HIF1 activation and reduction of mitochondria biogenesis through down regulation of the mitochondrial import machinery. These findings implicate viral microRNAs in the regulation of the cellular metabolism and highlight new potential avenues to inhibit viral latency.
Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/fisiologia , MicroRNAs/genética , Sarcoma de Kaposi/metabolismo , Aerobiose , Western Blotting , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/virologia , Proliferação de Células , Células Endoteliais/patologia , Células Endoteliais/virologia , Endotélio Vascular/patologia , Endotélio Vascular/virologia , Metabolismo Energético , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/virologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/virologia , Consumo de Oxigênio , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Células Tumorais Cultivadas , Vírion/metabolismo , Latência ViralRESUMO
The distinct nature of acute lymphoblastic leukemia (ALL) in adults, evidenced by inferior treatment outcome and different genetic landscape, mandates specific studies of disease-initiating mechanisms. In this study, we used NOD/LtSz-scid IL2Rγ null(c) (NSG) mouse xenotransplantation approaches to elucidate leukemia-initiating cell (LIC) biology in primary adult precursor B (pre-B) ALL to optimize disease modeling. In contrast with xenografting studies of pediatric ALL, we found that modification of the NSG host environment using preconditioning total body irradiation (TBI) was indispensable for efficient engraftment of adult non-t(4;11) pre-B ALL, whereas t(4;11) pre-B ALL was successfully reconstituted without this adaptation. Furthermore, TBI-based xenotransplantation of non-t(4;11) pre-B ALL enabled detection of a high frequency of LICs (<1:6900) and permitted frank leukemic engraftment from a remission sample containing drug-resistant minimal residual disease. Investigation of TBI-sensitive stromal-derived factor-1/chemokine receptor type 4 signaling revealed greater functional dependence of non-t(4;11) pre-B ALL on this niche-based interaction, providing a possible basis for the differential engraftment behavior. Thus, our studies establish the optimal conditions for experimental modeling of human adult pre-B ALL and demonstrate the critical protumorogenic role of microenvironment-derived SDF-1 in regulating adult pre-B LIC activity that may present a therapeutic opportunity.
Assuntos
Modelos Animais de Doenças , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Microambiente Tumoral/fisiologia , Adulto , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Citometria de Fluxo , Sobrevivência de Enxerto , Xenoenxertos , Humanos , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Transplante de Neoplasias/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismoRESUMO
Identifying novel players of the pluripotency gene regulatory network centered on Oct4, Sox2, and Nanog as well as delineating the interactions within the complex network is key to understanding self-renewal and early cell fate commitment of embryonic stem cells (ESC). While overexpression of the transcriptional regulator Cited2 sustains ESC pluripotency, its role in ESC functions remains unclear. Here, we show that Cited2 is important for proliferation, survival, and self-renewal of mouse ESC. We position Cited2 within the pluripotency gene regulatory network by defining Nanog, Tbx3, and Klf4 as its direct targets. We also demonstrate that the defects caused by Cited2 depletion are, at least in part, rescued by Nanog constitutive expression. Finally, we demonstrate that Cited2 is required for and enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.
Assuntos
Células-Tronco Embrionárias/fisiologia , Proteínas de Homeodomínio/biossíntese , Células-Tronco Pluripotentes/fisiologia , Proteínas Repressoras/deficiência , Transativadores/deficiência , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Proteína Homeobox Nanog , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , TransfecçãoRESUMO
In an attempt to discover novel growth factors for hematopoietic stem and progenitor cells (HSPCs), we have assessed cytokine responses of cord blood (CB)-derived CD34(+) cells in a high-content growth factor screen. We identify the immunoregulatory chemokine (C-C motif) ligand 28 (CCL28) as a novel growth factor that directly stimulates proliferation of primitive hematopoietic cells from different ontogenetic origins. CCL28 enhances the functional progenitor cell content of cultured cells by stimulating cell cycling and induces gene expression changes associated with survival. Importantly, addition of CCL28 to cultures of purified putative hematopoietic stem cells (HSCs) significantly increases the ability of the cells to long-term repopulate immunodeficient mice compared with equivalent input numbers of fresh cells. Together, our findings identify CCL28 as a potent growth-promoting factor with the ability to support the in vitro and in vivo functional properties of cultured human hematopoietic cells.
Assuntos
Proliferação de Células , Quimiocinas CC/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Quimiocinas CC/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/fisiologiaRESUMO
Local hypoxia in hematopoietic stem cell (HSC) niches is thought to regulate HSC functions. Hypoxia-inducible factor-1 (Hif-1) and Hif-2 are key mediators of cellular responses to hypoxia. Although oxygen-regulated α-subunits of Hifs, namely Hif-1α and Hif-2α, are closely related, they play overlapping and also distinct functions in nonhematopoietic tissues. Although Hif-1α-deficient HSCs lose their activity on serial transplantation, the role for Hif-2α in cell-autonomous HSC maintenance remains unknown. Here, we demonstrate that constitutive or inducible hematopoiesis-specific Hif-2α deletion does not affect HSC numbers and steady-state hematopoiesis. Furthermore, using serial transplantations and 5-fluorouracil treatment, we demonstrate that HSCs do not require Hif-2α to self-renew and recover after hematopoietic injury. Finally, we show that Hif-1α deletion has no major impact on steady-state maintenance of Hif-2α-deficient HSCs and their ability to repopulate primary recipients, indicating that Hif-1α expression does not account for normal behavior of Hif-2α-deficient HSCs.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Feminino , Deleção de Genes , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Masculino , CamundongosRESUMO
The ability to produce stem cells by induced pluripotency (iPS reprogramming) has rekindled an interest in earlier studies showing that transcription factors can directly convert specialized cells from one lineage to another. Lineage reprogramming has become a powerful tool to study cell fate choice during differentiation, akin to inducing mutations for the discovery of gene functions. The lessons learnt provide a rubric for how cells may be manipulated for therapeutic purposes.
Assuntos
Linhagem da Célula/fisiologia , Reprogramação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Redes Reguladoras de Genes/fisiologia , Humanos , Células-Tronco Pluripotentes/citologiaAssuntos
Neoplasias do Sistema Nervoso Central , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Hipóxia Celular/efeitos dos fármacos , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Molecular mechanisms employed by individual multipotent cells at the point of lineage commitment remain largely uncharacterized. Current paradigms span from instructive to noise-driven mechanisms. Of considerable interest is also whether commitment involves a limited set of genes or the entire transcriptional program, and to what extent gene expression configures multiple trajectories into commitment. Importantly, the transient nature of the commitment transition confounds the experimental capture of committing cells. We develop a computational framework that simulates stochastic commitment events, and affords mechanistic exploration of the fate transition. We use a combined modeling approach guided by gene expression classifier methods that infers a time-series of stochastic commitment events from experimental growth characteristics and gene expression profiling of individual hematopoietic cells captured immediately before and after commitment. We define putative regulators of commitment and probabilistic rules of transition through machine learning methods, and employ clustering and correlation analyses to interrogate gene regulatory interactions in multipotent cells. Against this background, we develop a Monte Carlo time-series stochastic model of transcription where the parameters governing promoter status, mRNA production and mRNA decay in multipotent cells are fitted to experimental static gene expression distributions. Monte Carlo time is converted to physical time using cell culture kinetic data. Probability of commitment in time is a function of gene expression as defined by a logistic regression model obtained from experimental single-cell expression data. Our approach should be applicable to similar differentiating systems where single cell data is available. Within our system, we identify robust model solutions for the multipotent population within physiologically reasonable values and explore model predictions with regard to molecular scenarios of entry into commitment. The model suggests distinct dependencies of different commitment-associated genes on mRNA dynamics and promoter activity, which globally influence the probability of lineage commitment.
Assuntos
Diferenciação Celular/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica , Modelos Biológicos , Análise por Conglomerados , Simulação por Computador , Fator de Transcrição GATA2/biossíntese , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Fator Estimulador de Colônias de Granulócitos/biossíntese , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Interleucina-3/biossíntese , Interleucina-3/genética , Interleucina-3/metabolismo , Modelos Estatísticos , Método de Monte Carlo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Processos EstocásticosRESUMO
Acute myeloid leukemia (AML) driven by the activation of EVI1 due to chromosome 3q26/MECOM rearrangements is incurable. Because transcription factors such as EVI1 are notoriously hard to target, insight into the mechanism by which EVI1 drives myeloid transformation could provide alternative avenues for therapy. Applying protein folding predictions combined with proteomics technologies, we demonstrate that interaction of EVI1 with CTBP1 and CTBP2 via a single PLDLS motif is indispensable for leukemic transformation. A 4× PLDLS repeat construct outcompetes binding of EVI1 to CTBP1 and CTBP2 and inhibits proliferation of 3q26/MECOM rearranged AML in vitro and in xenotransplant models. This proof-of-concept study opens the possibility to target one of the most incurable forms of AML with specific EVI1-CTBP inhibitors. This has important implications for other tumor types with aberrant expression of EVI1 and for cancers transformed by different CTBP-dependent oncogenic transcription factors.
Assuntos
Oxirredutases do Álcool , Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Proteína do Locus do Complexo MDS1 e EVI1 , Animais , Humanos , Camundongos , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas Correpressoras/metabolismo , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genéticaRESUMO
Induced pluripotent stem (iPS) cells offer a unique potential for understanding the molecular basis of disease and development. Here we have generated several human iPS cell lines, and we describe their pluripotent phenotype and ability to differentiate into erythroid cells, monocytes, and endothelial cells. More significantly, however, when these iPS cells were differentiated under conditions that promote lympho-hematopoiesis from human embryonic stem cells, we observed the formation of pre-B cells. These cells were CD45(+)CD19(+)CD10(+) and were positive for transcripts Pax5, IL7αR, λ-like, and VpreB receptor. Although they were negative for surface IgM and CD5 expression, iPS-derived CD45(+)CD19(+) cells also exhibited multiple genomic D-J(H) rearrangements, which supports a pre-B-cell identity. We therefore have been able to demonstrate, for the first time, that human iPS cells are able to undergo hematopoiesis that contributes to the B-cell lymphoid lineage.