Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901963

RESUMO

The development of portable volatile organic compound (VOC) sensors is essential for home healthcare and workplace safety because VOCs are environmental pollutants that may critically affect human health. Here, we report a compact and portable sensor platform based on a capacitive micromachined ultrasonic transducer (CMUT) array offering multiplex detection of various VOCs (toluene, acetone, ethanol, and methanol) using a single read-out system. Three CMUT resonant devices were functionalized with three different layers: (1) phenyl-selective peptide, (2) colloids of single-walled nanotubes and peptide, and (3) poly(styrene-co-allyl alcohol). As each device exhibited different sensitivities to the four VOCs, we performed principal component analysis to achieve selective detection of all four gases. For the simultaneous detection of VOCs using CMUT sensors, the changes in the resonant frequencies of three devices were monitored in real time, but using only a single oscillator through an electrically controlled relay to achieve compactness. In addition, by devising a wireless system, measurement results were transmitted to a smartphone to monitor the concentration of VOCs. We used multiple sensors to obtain a larger number of fingerprints for pattern recognition to enhance selectivity but interfaced these sensors with a single read-out circuit to minimize the footprint of the overall system. The compact CMUT-based sensor array based on a multiplex detection scheme is a promising sensor platform for portable VOC monitoring.

2.
Nanotechnology ; 26(24): 245702, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26016531

RESUMO

Bimetallic nanostructures can provide distinct and improved physicochemical properties by the coupling effect of the two metal components, making them promising materials for a variety of applications. Herein, we report composition-selective fabrication of ordered intermetallic Au-Cu nanowires (NWs) by two-step chemical vapor transport method and their application to nano-electrocatalytic glucose detection. Ordered intermetallic Au3Cu and AuCu3 NWs are topotaxially fabricated by supplying Cu-containing chemicals to pre-synthesized single-crystalline Au NW arrays. The composition of fabricated Au-Cu NWs can be selected by changing the concentration of Cu-containing species. Interestingly, Au3Cu NW electrodes show unique electrocatalytic activity for glucose oxidation, allowing us to detect glucose without interference from ascorbic acid. Such interference-free detection of glucose is attributed to the synergistic effect, induced by incorporation of Cu in Au. We anticipate that Au3Cu NWs could show possibility as efficient nano-size electrochemical glucose sensors and the present fabrication method can be employed to fabricate valuable ordered intermetallic nanostructures.


Assuntos
Cobre/química , Ouro/química , Nanofios/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Glucose/química , Oxirredução
3.
ACS Appl Bio Mater ; 2(3): 1233-1240, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021372

RESUMO

To prevent the global transmission of mutant viruses and minimize the damage caused by mutant virus infection, the accurate identification of newly emerged mutant viruses should be a priority. The key problem in mutant virus identification is that the selective detection of a mutant virus in the biological environment, where small amounts of mutant virus and copious amounts of wild-type virus coexist, is difficult. Herein, we report specific and ultrasensitive detection of oseltamivir-resistant (pH1N1/H275Y mutant) virus using functional Au nanoparticles (NPs). The functional Au NPs were prepared by modifying the surfaces of Au NPs with oseltamivir hexylthiol (OHT) and malachite green isothiocyanate (MGITC) simultaneously. OHT is an excellent receptor for the pH1N1/H275Y mutant virus because it has a 250-fold higher binding affinity for the pH1N1/H275Y mutant virus than for the wild-type virus. MGITC is a Raman reporter that provides a distinctive surface-enhanced Raman scattering (SERS) signal. The SERS signal of MGITC on Au NPs allows us to detect pH1N1/H275Y mutant viruses sensitively and quantitatively. The functional Au NPs enable naked-eye and SERS dual-mode detection of mutant viruses. Only in the presence of the pH1N1/H275Y mutant virus, the functional Au NPs aggregate, and the color of the NPs changes from red to purple. This allows us to detect mutant viruses with the naked eye. Furthermore, the aggregated Au NPs can provide strong SERS signals of MGITC. By measuring the SERS signals, we could detect the pH1N1/H275Y mutant virus with a detection limit of 10 PFU. Importantly, the pH1N1/H275Y mutant virus could be detected by using the functional Au NPs even in a mixture of mutant and wild-type viruses with a ratio of 1/100. This result suggests that the present method might be employed for the diagnosis of oseltamivir-resistant virus and for further research, including mutant virus analysis and drug development.

4.
ACS Sens ; 4(9): 2282-2287, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31407570

RESUMO

Influenza viruses cause respiratory infection, spread through respiratory secretions, and are shed into the nasal secretion and saliva specimens. Therefore, nasal fluid and saliva are effective clinical samples for the diagnosis of influenza virus-infected patients. Although several methods have been developed to detect various types of influenza viruses, approaches for detecting mutant influenza viruses in clinical samples are rarely reported. Herein, we report for the first time a surface-enhanced Raman scattering (SERS)-based sensing platform for oseltamivir-resistant pandemic H1N1 (pH1N1) virus detection in human nasal fluid and saliva. By combining SERS-active urchin Au nanoparticles and oseltamivir hexylthiol, an excellent receptor for the pH1N1/H275Y mutant virus, we detected the pH1N1/H275Y virus specifically and sensitively in human saliva and nasal fluid samples. Considering that the current influenza virus infection testing methods do not provide information on the antiviral drug resistance of the virus, the proposed SERS-based diagnostic test for the oseltamivir-resistant virus will inform clinical decisions about the treatment of influenza virus infections, avoiding the unnecessary prescription of ineffective drugs and greatly improving therapy.


Assuntos
Líquidos Corporais/virologia , Farmacorresistência Viral/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Oseltamivir/farmacologia , Saliva/virologia , Análise Espectral Raman , Humanos , Nariz , Propriedades de Superfície
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2897-2900, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441006

RESUMO

Accurate detection of neuropeptides in cerebrospinal fluid (CSF) plays an important role in both indepth studies and early diagnosis of neurological diseases. Here, we report a biosensor based on Capacitive Micromachined Ultrasonic Transducer (CMUT) which is capable of detecting low concentrations (pg $\sim $ ng/ml) of a neuropeptide involved with the progression of Alzheimer's diseases, somatostatin (SST). A 10-MHz CMUT was fabricated and utilized as a physical resonant sensor which detects the change in the concentration of analyte through the mass-loading mechanism. The resonant plate was sequentially coated with protein G and antibodies to provide specificity to SST; Cysteine-tagged protein G layer enables controlled immobilization of antibodies in a welloriented manner. The change in the resonant frequency of the CMUT sensor was measured after incubating the sensor in various concentrations of SST. The significant shifts in the resonant frequency were observed for SST concentrations in the range of 10 pg/ml $\sim 1$ ng/ml. Compared to the previously reported biosensors developed for SST detection, our sensor shows discernable responses for SST that are $\sim 6$ orders of magnitude lower in concentration. Thus, this work demonstrates the potential of the CMUT resonant sensor as a promising biosensor platform for detection of neuropeptides involved with neurodegenerative diseases that often exist in low concentrations in CSF.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Neuropeptídeos , Transdutores , Ultrassom
6.
Sci Rep ; 8(1): 12999, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158601

RESUMO

We have developed a novel oseltamivir derivative (oseltamivir hexylthiol; OHT) that exhibits a higher binding affinity for Tamiflu-resistant virus (Tamiflu resistance) than for the wild-type virus (Tamiflu-susceptible virus; WT) as an antibody. First, OHT-modified gold nanoparticles (OHT-GNPs) are used in a simple colorimetric assay as nanoprobes for the Tamiflu-resistant virus. In the presence of Tamiflu-resistant virus, they show a colorimetric change from deep red to purple because of the OHT-GNP aggregation driven by strong interactions between OHT and neuraminidase (NA) on the surface of the Tamiflu-resistance. Moreover, the color gradually turns purple as the concentration of the Tamiflu-resistant virus increases, allowing the determination of the presence of the virus with the naked eye. Furthermore, an OHT-based lateral flow assay (LFA) has been developed as a rapid and easy detection device for Tamiflu resistance. It shows detection specificity for various virus concentrations of Tamiflu-resistant virus even for the mixture of WT and Tamiflu-resistant viruses, where the limit of detection (LOD) is 5 × 102 ~ 103 PFU per test (=1 × 104 PFU/mL). It has been confirmed that this platform can provide accurate information on whether a virus exhibits Tamiflu resistance, thus supporting the selection of appropriate treatments using point-of-care (POC) diagnostics.


Assuntos
Antivirais/farmacologia , Técnicas Biossensoriais/métodos , Farmacorresistência Viral , Influenza Humana/virologia , Testes de Sensibilidade Microbiana/métodos , Orthomyxoviridae/efeitos dos fármacos , Oseltamivir/farmacologia , Calorimetria/métodos , Testes Diagnósticos de Rotina/métodos , Humanos , Influenza Humana/diagnóstico , Orthomyxoviridae/isolamento & purificação , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade
7.
Nanoscale ; 8(1): 214-8, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26645731

RESUMO

A sophisticated set of an Au nanowire (NW) stimulator-Au NW detector system is developed for electrical cell stimulation and electrochemical analysis of subsequent exocytosis with very high spatial resolution. Dopamine release from a rat pheochromocytoma cell is more stimulated by a more negative voltage pulse. This system could help to improve the therapeutic efficacy of electrotherapies by providing valuable information on their healing mechanism.


Assuntos
Dopamina/metabolismo , Exocitose/fisiologia , Ouro , Nanofios , Animais , Microeletrodos , Células PC12 , Ratos
8.
J Phys Chem B ; 115(33): 10147-53, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21749128

RESUMO

We present calculations for Lys-(H(2)O)(n) (n = 2, 3) to examine the effects of microsolvating water on the relative stability of the zwitterionic vs canonical forms of Lys. We calculate the structures, energies, and Gibbs free energies of the conformers at the B3LYP/6-311++G(d,p), wB97XD/6-311++G(d,p), and MP2/aug-cc-pvdz levels of theory, finding that three water molecules are required to stabilize the Lys zwitterion. By calculating the barriers of the canonical ↔ zwitterionic pathways of Lys-(H(2)O)(3) conformers, we suggest that both forms of Lys-(H(2)O)(3) may be observed in low temperature gas phase.


Assuntos
Lisina/química , Água/química , Temperatura Baixa , Íons/química , Solventes/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA