Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 35(1): 99-106, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38157473

RESUMO

Metal-mediated base pairs represent a topical alternative to canonical hydrogen-bonded base pairs. In this context, the ligand 1H-imidazo[4,5-f][1,10]phenanthroline (P) was introduced as an artificial nucleobase in a glycol nucleic acid-based nucleoside analogue into a DNA oligonucleotide in a way that the oligonucleotide contains a central block of six contiguous P residues. The ability to engage in Ag+-mediated base pairing was evaluated with respect to the four canonical nucleosides in positions complementary to P. Highly stabilizing Ag+-mediated base pairs were formed with cytosine and guanine (i.e., P-Ag+-C and P-Ag+-G base pairs), whereas the analogous base pairs with thymine and adenine were much less stable and hence formed incompletely. Surprisingly, the intermediate formation of a homodimeric duplex of the P-containing oligonucleotide was observed in all cases, albeit to a different extent. The homodimer is composed of P-Ag+-P base pairs and 18 overhanging mismatched canonical nucleobases. It demonstrates the obstacles present when designing metal-mediated base pairs as metal complexation may take place irrespective of the surrounding natural base pairs. Homodimer formation was found to be particularly prominent when the designated metal-mediated base pairs are of low stability, suggesting that homodimers and regular duplexes are formed in a competing manner.


Assuntos
DNA , Prata , Pareamento de Bases , Prata/química , Modelos Moleculares , DNA/química , Oligonucleotídeos/química
2.
J Proteome Res ; 22(6): 1959-1968, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37146082

RESUMO

Post-translational modifications (PTMs) alter the function and fate of proteins and cells in almost every conceivable way. Protein modifications can occur as a result of specific regulating actions of enzymes, such as tyrosine kinases phosphorylating tyrosine residues or by nonenzymatic reactions, such as oxidation related to oxidative stress and diseases. While many studies have addressed the multisite, dynamic, and network-like properties of PTMs, only little is known of the interplay of the same site modifications. In this work, we studied the enzymatic phosphorylation of oxidized tyrosine (l-DOPA) residues using synthetic insulin receptor peptides, in which tyrosine residues were replaced with l-DOPA. The phosphorylated peptides were identified by liquid chromatography-high-resolution mass spectrometry and the site of phosphorylation by tandem mass spectrometry. The results clearly show that the oxidized tyrosine residues are phosphorylated, displaying a specific immonium ion peak in the MS2 spectra. Furthermore, we detected this modification in our reanalysis (MassIVE ID: MSV000090106) of published bottom-up phosphoproteomics data. The modification, where both oxidation and phosphorylation take place at the same amino acid, has not yet been published in PTM databases. Our data indicate that there can be multiple PTMs that do not exclude each other at the same modification site.


Assuntos
Levodopa , Tirosina , Fosforilação , Tirosina/metabolismo , Levodopa/metabolismo , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Processamento de Proteína Pós-Traducional
3.
Chemistry ; 29(3): e202202630, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36219466

RESUMO

When covalently incorporating ligands capable of forming chiral metal complexes into a DNA oligonucleotide duplex, an enantiospecific formation of metal-mediated base pairs is possible. We have been investigating the chirality of the silver-mediated base pair P-AgI -P (P, 1H-imidazo[4,5-f][1,10]phenanthroline) depending on the number of consecutive P : P pairs within a series of duplexes. Towards this end, both enantiomers of the nucleoside analogue 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-1-yl)propane-1,2-diol comprising an acyclic backbone were introduced into DNA duplexes, resulting in diastereomeric metal-mediated base pairs. The same chiral-at-metal complex is formed inside the duplex for up to five neighbouring P-AgI -P pairs, irrespective of whether (S)-P or (R)-P is used. With six silver-mediated base pairs, the chirality of the metal complex is inverted for (S)-P but not for (R)-P. This indicates an intricate balance of what determines the configuration of the metal complex, the intrinsically preferred metal-centred chirality or the DNA helical chirality.


Assuntos
Complexos de Coordenação , Prata , Pareamento de Bases , DNA , Oligonucleotídeos
4.
Drug Test Anal ; 16(3): 314-322, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37482900

RESUMO

An automated sample preparation and separation method for the analysis of various enzyme-inhibitor combinations using liquid chromatography (LC) coupled to mass spectrometry (MS) is presented. As conventional anticoagulants have several drawbacks, the most severe being the elevated risk of internal bleedings, it is necessary to develop new-generation anticoagulants with reduced side effects. Therefore, the screening of potential inhibitors against anticoagulation targets like thrombin and FXIIa is important to design a potent and selective inhibitor. To facilitate the analysis of numerous enzyme-inhibitor covalent complexes, automation of the analysis using an LC system with a user-defined injection sequence is helpful. The developed method ensures comparable reaction conditions like reaction time and temperature for all enzyme-inhibitor complexes. Furthermore, it prevents time-consuming manual sample preparation and potential manual errors. To achieve good reproducibility with relative standard deviation of approximately 3% for three-fold determination, multiple cleaning steps were added to the automated sample preparation. Subsequently, this method was applied to screen a variety of 15 aminopyrazole- and aminotriazole-based inhibitors with a covalent mechanism of action against thrombin and to test two covalent inhibitors for FXIIa. Successful complex formation and acylation of the catalytic center of the enzymes was monitored using deconvoluted mass spectra and the matching mass shifts of the acyl moiety of the analyzed inhibitors. The inhibitors' structure directly influenced reaction yields. Sterically demanding aminotriazoles and acyl moieties both affected the product formation negatively. However, the screening yielded several promising candidates for new covalent thrombin inhibitors, which might find their application as prospective anticoagulants.


Assuntos
Proteínas Sanguíneas , Espectrometria de Massa com Cromatografia Líquida , Trombina , Reprodutibilidade dos Testes , Estudos Prospectivos , Anticoagulantes/farmacologia
5.
ACS Pharmacol Transl Sci ; 5(12): 1318-1347, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36524012

RESUMO

To counteract thrombosis, new safe and efficient antithrombotics are required. We herein report the design, synthesis, and biological activity of a series of amide-functionalized acylated 1,2,4-triazol-5-amines as selective inhibitors of blood coagulation factor XIIa and thrombin. The introduction of an amide moiety into the main scaffold of 3-aryl aminotriazoles added certain three-dimensional properties to synthesized compounds and allowed them to reach binding sites in FXIIa and thrombin previously unaddressed by non-functionalized 1,2,4-triazol-5-amines. Among synthesized compounds, one quinoxaline-derived aminotriazole bearing N-butylamide moiety inhibited FXIIa with the IC50 value of 28 nM, whereas the N-phenylamide-derived aminotriazole inhibited thrombin with the IC50 value of 41 nM. Performed mass-shift experiments and molecular modeling studies proved the covalent mechanism of FXIIa and thrombin inhibition by synthesized compounds. In plasma coagulation tests, developed aminotriazoles showed anticoagulant properties mainly affecting the intrinsic blood coagulation pathway, activation of which is associated with thrombosis but is negligible for hemostasis.

6.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36355511

RESUMO

New antithrombotic drugs are needed to combat thrombosis, a dangerous pathology that causes myocardial infarction and ischemic stroke. In this respect, thrombin (FIIa) represents an important drug target. We herein report the synthesis and biological activity of a series of 1H-pyrazol-5-amine-based thrombin inhibitors with a serine-trapping mechanism of action. Among synthesized compounds, flexible acylated 1H-pyrazol-5-amines 24e, 34a, and 34b were identified as potent 16-80 nM thrombin inhibitors, which showed practically no off-targeting effect against other physiologically relevant serine proteases. To prove that synthesized compounds are covalent thrombin inhibitors, the most potent derivative 24e (FIIa IC50 = 16 nM) was studied in a mass-shift assay, where it has been shown that 24e transfers its acyl moiety (pivaloyl) to the catalytic Ser195 of thrombin. Performed herein docking studies also confirmed the covalent mechanism of thrombin inhibition by synthesized compounds. Acylated aminopyrazoles found during this study showed only limited effects on plasma coagulation in activated partial thrombin time (aPTT) and prothrombin time (PT) in vitro assays. However, such thrombin inhibitors are expected to have virtually no effect on bleeding time and can be used as a starting point for developing a safer alternative to traditional non-covalent anticoagulants.

7.
J Chromatogr A ; 1652: 462370, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34246961

RESUMO

A fast and automated separation and quantification method for bromide and the artificial nucleoside 5-bromo-2'-deoxyuridine (5-BrdU) via hyphenation of ion exchange chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS) is presented. The analysis of these two species is relevant to monitor the transfer of electrons along metal-mediated DNA base pairs. Charge transfer in DNA is of high interest for the implementation in nanotechnological applications like molecular wires. 5-BrdU as part of the DNA sequence releases bromide upon one electron reduction after efficient electron transfer along the DNA. The concentrations of 5-BrdU and bromide in enzymatically digested DNA samples can therefore be used as a marker for the efficiency of electron transfer along the DNA helix. A large number of samples was analyzed using an automated IC system. This platform enables time-efficient external calibration by inline dilution of a stock solution. Due to the fast separation of the two bromine species in less than 90 s, the developed method is suitable for screening applications with a multitude of samples. Despite the isobaric interferences and a low degree of ionization for bromine detection via ICP-MS the method has a limit of detection (LOD) of 30 ng/L which is approximately an order of magnitude lower than a comparable method using reversed phase high performance liquid chromatography (RP-HPLC) and ICP-MS.


Assuntos
Brometos , Bromo , Bromodesoxiuridina , Técnicas de Química Analítica , Espectrometria de Massas , Brometos/análise , Bromo/química , Bromodesoxiuridina/análise , Técnicas de Química Analítica/métodos , Cromatografia por Troca Iônica , DNA/química
8.
ChemMedChem ; 16(24): 3672-3690, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34278727

RESUMO

Herein we report a microscale parallel synthetic approach allowing for rapid access to libraries of N-acylated aminotriazoles and screening of their inhibitory activity against factor XIIa (FXIIa) and thrombin, which are targets for antithrombotic drugs. This approach, in combination with post-screening structure optimization, yielded a potent 7 nM inhibitor of FXIIa and a 25 nM thrombin inhibitor; both compounds showed no inhibition of the other tested serine proteases. Selected N-acylated aminotriazoles exhibited anticoagulant properties in vitro influencing the intrinsic blood coagulation pathway, but not extrinsic coagulation. Mechanistic studies of FXIIa inhibition suggested that synthesized N-acylated aminotriazoles are covalent inhibitors of FXIIa. These synthesized compounds may serve as a promising starting point for the development of novel antithrombotic drugs.


Assuntos
Amitrol (Herbicida)/farmacologia , Anticoagulantes/farmacologia , Fator XIIa/antagonistas & inibidores , Inibidores de Serina Proteinase/farmacologia , Trombina/antagonistas & inibidores , Acilação , Amitrol (Herbicida)/síntese química , Amitrol (Herbicida)/química , Anticoagulantes/síntese química , Anticoagulantes/química , Coagulação Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fator XIIa/metabolismo , Humanos , Estrutura Molecular , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade , Trombina/metabolismo
9.
Metallomics ; 12(11): 1702-1712, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32930317

RESUMO

In this study, the combination of speciation analysis and native mass spectrometry is presented as a powerful tool to gain new insight into the diverse interactions of environmentally relevant organotin compounds (OTCs) with proteins. Analytical standards of model proteins, such as ß-lactoglobulin A (LGA), were thereby incubated with different phenyl- and butyltins. For adduct identification and characterization, the incubated samples were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) and electrospray ionization-mass spectrometry (ESI-MS) in combination with size exclusion chromatography (SEC). It allowed for a mild separation, which was most crucial to preserve the acid-labile organotin-protein adducts during their analyses. The binding of triorganotin compounds, such as triphenyltin, was shown to be sulfhydryl-directed by using cysteine-specific protein labeling. However, the sole availability of reduced cysteine residues in proteins did not automatically enable adduct formation. This observation complements previous studies and indicates the necessity of a highly specific binding pocket, which was identified for the model protein LGA via enzymatic digestion experiments. In contrast to triorganotins, their natural di- and mono-substituted degradation products, such as dibutyltin, revealed to be less specific regarding their binding to several proteins. Further, it also did not depend on reduced cysteine residues within the protein. In this context, they can probably act as linker molecules, interconnecting proteins, and leading to dimers and probably to higher oligomers. Furthermore, dibutyltin was observed to induce hydrolysis of the protein's peptide backbone at a specific site. Concerning unknown long-term toxic effects, our studies emphasize the importance of future studies on di- and mono-substituted OTCs.


Assuntos
Compostos Orgânicos de Estanho/metabolismo , Proteínas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Cromatografia em Gel , Humanos , Concentração de Íons de Hidrogênio , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA