Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nano Lett ; 24(8): 2429-2436, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363878

RESUMO

DNA origami is a powerful tool to fold 3-dimensional DNA structures with nanometer precision. Its usage, however, is limited as high ionic strength, temperatures below ∼60 °C, and pH values between 5 and 10 are required to ensure the structural integrity of DNA origami nanostructures. Here, we demonstrate a simple and effective method to stabilize DNA origami nanostructures against harsh buffer conditions using [PdCl4]2-. It provided the stabilization of different DNA origami nanostructures against mechanical compression, temperatures up to 100 °C, double-distilled water, and pH values between 4 and 12. Additionally, DNA origami superstructures and bound cargos are stabilized with yields of up to 98%. To demonstrate the general applicability of our approach, we employed our protocol with a Pd metallization procedure at elevated temperatures. In the future, we think that our method opens up new possibilities for applications of DNA origami nanostructures beyond their usual reaction conditions.


Assuntos
Metais Pesados , Nanoestruturas , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Temperatura , Nanotecnologia
2.
Opt Express ; 31(16): 26451-26462, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710506

RESUMO

Photonic integrated circuits require photodetectors that operate at room temperature with sensitivity at telecom wavelengths and are suitable for integration with planar complementary-metal-oxide-semiconductor (CMOS) technology. Silicon hyperdoped with deep-level impurities is a promising material for silicon infrared detectors because of its strong room-temperature photoresponse in the short-wavelength infrared region caused by the creation of an impurity band within the silicon band gap. In this work, we present the first experimental demonstration of lateral Te-hyperdoped Si PIN photodetectors operating at room temperature in the optical telecom bands. We provide a detailed description of the fabrication process, working principle, and performance of the photodiodes, including their key figure of merits. Our results are promising for the integration of active and passive photonic elements on a single Si chip, leveraging the advantages of planar CMOS technology.

3.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686352

RESUMO

The self-assembly of conducting nanostructures is currently being investigated intensively in order to evaluate the feasibility of creating novel nanoelectronic devices and circuits using such pathways. In particular, methods based on so-called DNA Origami nanostructures have shown great potential in the formation of metallic nanowires. The main challenge of this method is the reproducible generation of very well-connected metallic nanostructures, which may be used as interconnects in future devices. Here, we use a novel design of nanowires with a quasi-circular cross-section as opposed to rectangular or uncontrolled cross-sections in earlier studies. We find indications that the reliability of the fabrication scheme is enhanced and the overall resistance of the wires is comparable to metallic nanostructures generated by electrochemistry or top-down methods. In addition, we observe that some of the nanowires are annealed when passing a current through them, which leads to a clear enhancement for the conductance. We envision that these nanowires provide further steps towards the successful generation of nanoelectronics using self-assembly.


Assuntos
Nanoestruturas , Nanofios , Reprodutibilidade dos Testes , DNA , Eletroquímica
4.
Langmuir ; 37(49): 14284-14291, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34860534

RESUMO

Among other new device concepts, nickel silicide (NiSix)-based Schottky barrier nanowire transistors are projected to supplement down-scaling of the complementary metal-oxide semiconductor (CMOS) technology as its physical limits are reached. Control over the NiSix phase and its intrusions into the nanowire is essential for superior performance and down-scaling of these devices. Several works have shown control over the phase, but control over the intrusion lengths has remained a challenge. To overcome this, we report a novel millisecond-range flash lamp annealing (FLA)-based silicidation process. Nanowires are fabricated on silicon-on-insulator substrates using a top-down approach. Subsequently, Ni silicidation experiments are carried out using FLA. It is demonstrated that this silicidation process gives unprecedented control over the silicide intrusions. Scanning electron microscopy and high-resolution transmission electron microscopy are performed for structural characterization of the silicide. FLA temperatures are estimated with the help of simulations.

5.
Soft Matter ; 17(3): 516-522, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33226041

RESUMO

When considering the flow of currents through obstacles, one core expectation is that the total resistance of sequential single resistors is additive. While this rule is most commonly applied to electronic circuits, it also applies to other transport phenomena such as the flow of colloids or nanoparticles through channels containing multiple obstacles, as long as these obstacles are sufficiently far apart. Here we explore the breakdown of this additivity for fluids of repulsive colloids driven over two energetic barriers in a microchannel, using real-space microscopy experiments, particle-resolved simulations, and dynamical density functional theory. If the barrier separation is comparable to the particle correlation length, the resistance is highly non-additive, such that the resistance added by the second barrier can be significantly higher or lower than that of the first. Surprisingly, in some cases the second barrier can even add a negative resistance, such that two identical barriers are easier to cross than a single one. We explain this counterintuitive observation in terms of the structuring of particles trapped between the barriers.

6.
Eur Phys J E Soft Matter ; 44(2): 23, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33683470

RESUMO

Colloidal Janus microparticles can be propelled by controlled chemical reactions on their surfaces. Such microswimmers have been used as model systems for the behavior on the microscale and as carriers for cargo to well-defined positions in hard-to-access areas. Here we demonstrate the propagation motion of clusters of magnetic Janus particles driven by the catalytic decomposition of [Formula: see text] on their metallic caps. The magnetic moments of their caps lead to certain spatial arrangements of Janus particles, which can be influenced by external magnetic fields. We investigate how the arrangement of the particles and caps determines the driven motion of the particle clusters. In addition, we show the influence of confining walls on the cluster motion, which will be encountered in any real-life biological system.

7.
Langmuir ; 36(42): 12504-12512, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33054235

RESUMO

The shape of objects has a strong influence on their dynamics. Here, we present comparative studies of two different motile objects, spherical Ag/AgCl Janus particles and polystyrene Janus nanorods, that move due to an ionic self-diffusiophoretic propulsion mechanism when exposed to blue light. In this paper, we propose a method to fabricate Janus rodlike particles with high aspect ratios and hemispherical tip shapes. The inherent asymmetry due to the ratio between capped and uncapped parts of the particles as well as the shape anistropy of Janus nanorods enables imaging and quantification of rotational dynamics. The dynamics of microswimmers are compared in terms of velocities and diffusion coefficients. We observe that despite a small amount of the Ag/AgCl reagent on the surface of rodlike objects, these new Janus micromotors reveal high motility in pure water. While the velocities of spherical particles reach 4.2 µm/s, the single rodlike swimmers reach 1.1 µm/s, and clusters reach 1.6 µm/s. The effect of suppressed rotational diffusion is discussed as one of the reasons for the increased velocities. These Janus micro- and nanomotors hold the promise for application in light-controlled propulsion transport.

8.
Nat Mater ; 17(11): 1027-1032, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323335

RESUMO

Metal-organic frameworks (MOFs) are hybrid materials based on crystalline coordination polymers that consist of metal ions connected by organic ligands. In addition to the traditional applications in gas storage and separation or catalysis, the long-range crystalline order in MOFs, as well as the tunable coupling between the organic and inorganic constituents, has led to the recent development of electrically conductive MOFs as a new generation of electronic materials. However, to date, the nature of charge transport in the MOFs has remained elusive. Here we demonstrate, using high-frequency terahertz photoconductivity and Hall effect measurements, Drude-type band-like transport in a semiconducting, π-d conjugated porous Fe3(THT)2(NH4)3 (THT, 2,3,6,7,10,11-triphenylenehexathiol) two-dimensional MOF, with a room-temperature mobility up to ~ 220 cm2 V-1 s-1. The temperature-dependent conductivity reveals that this mobility represents a lower limit for the material, as mobility is limited by impurity scattering. These results illustrate the potential for high-mobility semiconducting MOFs as active materials in thin-film optoelectronic devices.

9.
Nano Lett ; 18(3): 2116-2123, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29482327

RESUMO

We introduce a new concept for the solution-based fabrication of conductive gold nanowires using DNA templates. To this end, we employ DNA nanomolds, inside which electroless gold deposition is initiated by site-specific attached seeds. Using programmable interfaces, individual molds self-assemble into micrometer-long mold superstructures. During subsequent internal gold deposition, the mold walls constrain the metal growth, such that highly homogeneous nanowires with 20-30 nm diameters are obtained. Wire contacting using electron-beam lithography and electrical conductance characterization at temperatures between 4.2 K and room temperature demonstrate that metallic conducting wires were produced, although for part of the wires, the conductance is limited by boundaries between gold grains. Using different mold designs, our synthesis scheme will, in the future, allow the fabrication of complex metal structures with programmable shapes.


Assuntos
DNA/química , Condutividade Elétrica , Ouro/química , Nanotecnologia/métodos , Nanofios/química , Nanofios/ultraestrutura , Temperatura
10.
Int J Mol Sci ; 19(10)2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282940

RESUMO

The use of self-assembly techniques may open new possibilities in scaling down electronic circuits to their ultimate limits. Deoxyribonucleic acid (DNA) nanotechnology has already demonstrated that it can provide valuable tools for the creation of nanostructures of arbitrary shape, therefore presenting an ideal platform for the development of nanoelectronic circuits. So far, however, the electronic properties of DNA nanostructures are mostly insulating, thus limiting the use of the nanostructures in electronic circuits. Therefore, methods have been investigated that use the DNA nanostructures as templates for the deposition of electrically conducting materials along the DNA strands. The most simple such structure is given by metallic nanowires formed by deposition of metals along the DNA nanostructures. Here, we review the fabrication and the characterization of the electronic properties of nanowires, which were created using these methods.


Assuntos
DNA/química , Eletricidade , Metais/química , Nanofios/química , DNA/metabolismo , Íons , Nanopartículas Metálicas/química , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico
11.
Langmuir ; 32(40): 10159-10165, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27626925

RESUMO

DNA origami nanostructures have been used extensively as scaffolds for numerous applications such as for organizing both organic and inorganic nanomaterials, studying single molecule reactions, and fabricating photonic devices. Yet, little has been done toward the integration of DNA origami nanostructures into nanoelectronic devices. Among other challenges, the technical difficulties in producing well-defined electrical contacts between macroscopic electrodes and individual DNA origami-based nanodevices represent a serious bottleneck that hinders the thorough characterization of such devices. Therefore, in this work, we have developed a method to electrically contact individual DNA origami-based metallic nanowires using electron beam lithography. We then characterize the charge transport of such nanowires in the temperature range from room temperature down to 4.2 K. The room temperature charge transport measurements exhibit ohmic behavior, whereas at lower temperatures, multiple charge transport mechanisms such as tunneling and thermally assisted transport start to dominate. Our results confirm that charge transport along metallized DNA origami nanostructures may deviate from pure metallic behavior due to several factors including partial metallization, seed inhomogeneities, impurities, and weak electronic coupling among AuNPs. Besides, this study further elucidates the importance of variable temperature measurements for determining the dominant charge transport mechanisms for conductive nanostructures made by self-assembly approaches.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química , Nanofios/química , Eletricidade , Técnicas Eletroquímicas , Nanotecnologia/métodos , Temperatura
12.
Eur Phys J E Soft Matter ; 39(7): 69, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27412618

RESUMO

In this article, we demonstrate how magnetic anisotropy of colloidal particles can give rise to unusual dynamics and controllable rearrangements under time-dependent fields. As an example, we study spherical particles with a radially off-centered net magnetic moment in an oscillating field. Based on complementary data from a numerical simulation of spheres with shifted dipole and experimental observations from particles with hemispherical ferromagnetic coating, it is explained on a two particle basis how this magnetic anisotropy causes nontrivial rotational motion and magnetic reorientation. We further present the behavior of larger ensembles of coated particles. It illustrates the potential for controlled reconfiguration based on the presented two-particle dynamics.

13.
Opt Express ; 23(22): 28728-35, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561141

RESUMO

Graphene has unique optical and electronic properties that make it attractive as an active material for broadband ultrafast detection. We present here a graphene-based detector that shows 40-picosecond electrical rise time over a spectral range that spans nearly three orders of magnitude, from the visible to the far-infrared. The detector employs a large area graphene active region with interdigitated electrodes that are connected to a log-periodic antenna to improve the long-wavelength collection efficiency, and a silicon carbide substrate that is transparent throughout the visible regime. The detector exhibits a noise-equivalent power of approximately 100 µW·Hz(-½) and is characterized at wavelengths from 780 nm to 500 µm.

14.
Langmuir ; 30(19): 5655-61, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24754552

RESUMO

Here we present electrochemically grown ultrathin platinum nanowires and demonstrate that their morphology and crystalline structure can be tuned by the waveform of the alternating voltage applied to the microelectrodes. The structure of the nanowires was analyzed by scanning and transmission electron microscopy. The voltage signal, applied to grow the nanowires, consisted of several Fourier components of a square-shaped wave. We observed that, depending on the number of Fourier components, the morphology of the nanowires changed from branched dendritic-like patterns to straight wires and the wire crystallinity changed from polycrystalline to highly oriented growth with the [111] direction of platinum crystallites along the nanowire axis. We propose a simple model to explain this intriguing observation.


Assuntos
Eletroquímica/métodos , Nanotecnologia/métodos , Nanofios/química , Platina/química
15.
Phys Rev E ; 109(6-1): 064601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020999

RESUMO

Brownian dynamics simulations are utilized to study segregation phenomena far from thermodynamic equilibrium. In the present study, we expand upon the analysis of binary colloid mixtures and introduce a third particle species to further our understanding of colloidal systems. Gravitationally driven, spherical colloids immersed in an implicit solvent are confined in two-dimensional linear microchannels. The interaction between the colloids is modeled by the Weeks-Chandler-Andersen potential, and the confinement of the colloids is realized by hard walls based on the solution of the Smoluchowski equation in half space. In binary and ternary colloidal systems, a difference in the driving force is achieved by differing colloid sizes but fixed mass density. We observe for both the binary and ternary systems that a driving force difference induces a nonequilibrium phase transition to lanes. For ternary systems, we study the tendency of lane formation to depend on the diameter of the medium-sized colloids. Here we find a sweet spot for lane formation in ternary systems. Furthermore, we study the interaction of two differently sized colloids at the channel walls. Recently we observed that driven large colloids push smaller colloids to the walls. This results in small particle lanes at the walls at early simulation times. In this work we additionally find that thin lanes are unstable and dissolve over very long time frames. Furthermore, we observe a connection between lane formation and the nonuniform distribution of particles along the channel length. This nonuniform distribution occurs either alongside lane formation or in shared lanes (i.e., lanes consisting of two colloid types).

16.
Sci Rep ; 14(1): 5813, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461196

RESUMO

Vertical stacking of different two-dimensional (2D) materials into van der Waals heterostructures exploits the properties of individual materials as well as their interlayer coupling, thereby exhibiting unique electrical and optical properties. Here, we study and investigate a system consisting entirely of different 2D materials for the implementation of electronic devices that are based on quantum mechanical band-to-band tunneling transport such as tunnel diodes and tunnel field-effect transistors. We fabricated and characterized van der Waals heterojunctions based on semiconducting layers of WSe2 and MoS2 by employing different gate configurations to analyze the transport properties of the junction. We found that the device dielectric environment is crucial for achieving tunneling transport across the heterojunction by replacing thick oxide dielectrics with thin layers of hexagonal-boronnitride. With the help of additional top gates implemented in different regions of our heterojunction device, it was seen that the tunneling properties as well as the Schottky barriers at the contact interfaces could be tuned efficiently by using layers of graphene as an intermediate contact material.

17.
J Phys Chem Lett ; 15(23): 6010-6016, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38814350

RESUMO

This study investigates the electronic band structure of chromium sulfur bromide (CrSBr) through comprehensive photoluminescence (PL) characterization. We clearly identify low-temperature optical transitions between two closely adjacent conduction-band states and two different valence-band states. The analysis on the PL data robustly unveils energy splittings, band gaps, and excitonic transitions across different thicknesses of CrSBr, from monolayer to bulk. Temperature-dependent PL measurements elucidate the stability of the band splitting below the Néel temperature, suggesting that magnons coupled with excitons are responsible for the symmetry breaking and brightening of the transitions from the secondary conduction band minimum (CBM2) to the global valence band maximum (VBM1). Collectively, these results not only reveal splitting in both the conduction and valence bands but also highlight a significant advance in our understanding of the interplay between the optical, electronic, and magnetic properties of antiferromagnetic two-dimensional van der Waals crystals.

18.
Phys Rev Lett ; 110(17): 177201, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679763

RESUMO

We report on pairs of converging-diverging spin vortices in Co/Rh/NiFe trilayer disks. The lateral magnetization distribution of these effective spin merons is directly imaged by means of element-selective x-ray microscopy. By this method, both the divergence and circulation states of the individual layers are identified to be antisymmetric. Reversal measurements on corresponding continuous films reveal that biquadratic interlayer exchange coupling is the cause for the effective meron pair formation. Moreover, their three-dimensional magnetization structure is determined by micromagnetic simulations. Interestingly, the magnetic induction aligns along a flux-closing torus. This toroidal topology enforces a symmetry break, which links the core polarities to the divergence configuration.

19.
Nano Lett ; 12(7): 3736-42, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22734823

RESUMO

We report on the experimental analysis of the charge transport through single-molecule junctions of the open and closed isomers of photoswitching molecules. Sulfur-free diarylethene molecules are developed and studied via electrical and optical measurements as well as density functional theory calculations. The single-molecule conductance and the current-voltage characteristics are measured in a mechanically controlled break-junction system at low temperatures. Comparing the results with the single-level transport model, we find an unexpected behavior of the current-dominating molecular orbital upon isomerization. We show that both the side chains and end groups of the molecules are crucial to understand the charge transport mechanism of photoswitching molecular junctions.

20.
Phys Rev E ; 108(3-1): 034607, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849083

RESUMO

We investigate the lane formation in nonequilibrium systems of colloidal particles moving in parallel that are driven by the force of gravity. For this setup, an experimental implementation of a channel on a slope can be conceptualized. We employ the Brownian dynamics algorithm and confine the repulsive particles with hard walls based on the solution of the Smoluchowski equation in the half space. A difference of the driving force acting on the colloids could be achieved by using two spherical particle types with differing diameters but equal mass density. First, we investigate how a difference in the channel slope affects the lane formation of the systems, after which we analyze the lanes that formed. We find that the large particles push the small particles to the walls, resulting in exclusively small particle lanes at the walls. This contrasts the equilibrium state, where depletion forces push the larger particles to the walls. Additionally, we have a closer look at the mechanisms by which the lanes form. Finally, we find system parameter values that foster lane formation to lay the foundation for an experimental realization of our proposed setup. To round this off, we give an exemplary calculation of the slope angle needed to get the experimental system into a state of lane order. With the examination of lane order in systems that are driven in parallel, we hope to deepen our understanding of nonequilibrium order phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA