Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1865(1): 184072, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216096

RESUMO

One of the most distinguished quantities that describes lipid main phase transition, i.e. the transition from the gel (Lß(')) to the fluid (Lα) phase, is its melting temperature (Tm). Because melting is accompanied by a large change in enthalpy the, Lß(') â†’ Lα transition can be monitored by various calorimetric, structural and spectroscopic techniques and Tm should be the same regardless of the metric monitored or the technique employed. However, in the case of DPPE multilamellar aggregates there is a small but systematic deviation of Tm values determined by DSC and FTIR spectroscopy. The aim of this paper is to explain this discrepancy by combined UV/Vis spectroscopic and MD computational approach. Multivariate analysis performed on temperature-dependent UV/Vis spectra of DPPE suspensions demonstrated that at 55 ± 1 °C certain phenomenon causes a small but detectable change in suspension turbidity, whereas a dominant change in the latter is registered at 63.2 ± 0.4 °C that coincides with Tm value determined from DSC curve. If this effect should be ignored, the overall data give Tm value the same as FTIR spectra data (61.0 ± 0.4 °C). As the classical MD simulations suggest that about 10° below Tm certain undulations appear at the surface of DPPE bilayers, we concluded that certain discontinuities in curvature fluctuations arise at reported temperature which are to some extent coupled with lipid melting. Ultimately, such events and the associated changes in curvature affect Tm value measured by different techniques.


Assuntos
Bicamadas Lipídicas , Temperatura , Bicamadas Lipídicas/química , Transição de Fase , Análise Espectral
2.
RSC Adv ; 13(25): 17384-17397, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37304776

RESUMO

The precipitation of calcium phosphates (CaPs) in the presence of more than one type of additive is of interest both from a fundamental point of view and as a possible biomimetic route for the preparation of multicomponent composites in which the activity of the components is preserved. In this study, the effect of bovine serum albumin (BSA) and chitosan (Chi) on the precipitation of CaPs in the presence of silver nanoparticles (AgNPs) stabilized with sodium bis(2-ethylhexyl)sulfosuccinate (AOT-AgNPs), poly(vinylpyrrolidone) (PVP-AgNPs), and citrate (cit-AgNPs) was investigated. In the control system, the precipitation of CaPs occurred in two steps. Amorphous calcium phosphate (ACP) was the first precipitated solid, which transformed into a mixture of calcium-deficient hydroxyapatite (CaDHA) and a smaller amount of octacalcium phosphate (OCP) after 60 min of ageing. Both biomacromolecules inhibited ACP transformation, with Chi being a stronger inhibitor due to its flexible molecular structure. As the concentration of the biomacromolecules increased, the amount of OCP decreased both in the absence and presence of AgNPs. In the presence of cit-AgNPs and two highest BSA concentrations, a change in the composition of the crystalline phase was observed. Calcium hydrogen phosphate dihydrate was formed in the mixture with CaDHA. An effect on the morphology of both the amorphous and crystalline phases was observed. The effect depended on the specific combination of biomacromolecules and differently stabilized AgNP. The results obtained suggest a simple method for fine-tuning the properties of precipitates using different classes of additives. This could be of interest for the biomimetic preparation of multifunctional composites for bone tissue engineering.

3.
Bioengineering (Basel) ; 10(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38135983

RESUMO

Various efforts have been made to develop antibacterial biomaterials capable of also sustaining bone remodulation to be used as bone substitutes and reduce patient infection rates and related costs. In this work, beta-tricalcium phosphate (ß-TCP) was chosen due to its known biocompatibility and use as a bone substitute. Metal dopants were incorporated into the crystal structure of the ß-TCP, and disks were produced from this material. Magnesium and strontium, as well as copper and silver, were chosen as dopants to improve the osteogenic and antibacterial properties, respectively. The surface of the ß-TCP samples was further modified using a femtosecond laser system. Grid and line patterns were produced on the plates' surface via laser ablation, creating grooves with depths lower than 20 µm and widths between 20 and 40 µm. Raman and FTIR analysis confirmed that laser ablation did not result in the degradation or phase change of the materials, making it suitable for surface patterning. Laser ablation resulted in increased hydrophilicity of the materials, as the control samples (non-ablated samples) have WCA values ranging from 70° to 93° and become, upon laser ablation, superwicking surfaces. Confocal measurements show an increase in specific surface area of 50% to 200% compared to the control. Overall, the results indicate the potential of laser ablation to improve the surface characteristics of ß-TCP, which may lead to an improvement in the antibacterial and osteogenic properties of the produced materials.

4.
Antioxidants (Basel) ; 10(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34439459

RESUMO

Superparamagnetic magnetite nanoparticles (MNPs) with excellent biocompatibility and negligible toxicity were prepared by solvothermal method and stabilized by widely used and biocompatible polymer poly(ethylene glycol) PEG-4000 Da. The unique properties of the synthesized MNPs enable them to host the unstable and water-insoluble quercetin as well as deliver and localize quercetin directly to the desired site. The chemical and physical properties were validated by X-ray powder diffraction (XRPD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), superconducting quantum interference device (SQUID) magnetometer, FTIR spectroscopy and dynamic light scattering (DLS). The kinetics of in vitro quercetin release from MNPs followed by UV/VIS spectroscopy was controlled by employing combined stationary and alternating magnetic fields. The obtained results have shown an increased response of quercetin from superparamagnetic MNPs under a lower stationary magnetic field and s higher frequency of alternating magnetic field. The achieved findings suggested that we designed promising targeted quercetin delivery with fine-tuning drug release from magnetic MNPs.

5.
Front Public Health ; 9: 661376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898384

RESUMO

When a radiological and nuclear (R/N) emergency occurs, the categorization of individuals into those who are unaffected and those requiring medical intervention is a high priority. At times, a professional dosimeter is not available and therefore some common belongings may be used as fortuitous dosimeters. The preparation of these objects for the measurement should be such as to give the most accurate and precise results. This paper focused on the Photo-Stimulated Luminescence (PSL) response of salty crackers confronts the problem of sample preparation (mass, grain size), dose response and signal stability. The dose response was determined for doses up to 5 Gy, which allowed the calculation of the limit of detection. Additionally, the signal stability was investigated for samples irradiated with 0.3 and 3 Gy. The observed decrease of the signal does not prevent the detection in the dose range typical for R/N emergency. The main dosimetric characteristics were investigated by using two different models of PSL readers equipped with single (infrared) or double (infrared, blue light) stimulation. The results indicated that the limit of detection can be improved by applying blue light stimulation. Moreover, strong correlation of the measurements performed in the two different instruments, as well as the rapidity of the analysis and the simplicity of the operations, suggest that this method can be suitable for a rapid radiation triage of a large number of civilians in a mass casualty event. The study was simultaneously conducted by two laboratories (Ruder Boskovic Institute, RBI, Croatia and Istituto Superiore di Sanità, ISS, Italy) involved in the BioPhyMeTRE project (grant No. G5684) supported by NATO Science for Peace and Security Programme.


Assuntos
Dosímetros de Radiação , Triagem , Croácia , Humanos , Itália , Radiometria
6.
Nanomaterials (Basel) ; 11(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207588

RESUMO

The constantly growing need for advanced bone regeneration materials has motivated the development of calcium phosphates (CaPs) composites with a different metal or metal-oxide nanomaterials and their economical and environmentally friendly production. Here, two procedures for the synthesis of CaPs composites with TiO2 nanoplates (TiNPl) and nanowires (TiNWs) were tested, with the immersion of TiO2 nanomaterials (TiNMs) in corrected simulated body fluid (c-SBF) and precipitation of CaP in the presence of TiNMs. The materials obtained were analyzed by powder X-ray diffraction, spectroscopic and microscopic techniques, Brunauer-Emmett-Teller surface area analysis, thermogravimetric analysis, dynamic and electrophoretic light scattering, and their hemocompatibility and ability to induce reactive oxygen species were evaluated. After 28 days of immersion in c-SBF, no significant CaP coating was formed on TiNMs. However, the composites with calcium-deficient apatite (CaDHA) were obtained after one hour in the spontaneous precipitation system. In the absence of TiNMs, CaDHA was also formed, indicating that control of the CaP phase formed can be accomplished by fine-tuning conditions in the precipitation system. Although the morphology and size of crystalline domains of CaDHA obtained on the different nanomaterials differed, no significant difference was detected in their local structure. Composites showed low reactive oxygen species (ROS) production and did not induce hemolysis. The results obtained indicate that precipitation is a suitable and fast method for the preparation of CaPs/TiNMs nanocomposites which shows great potential for biomedical applications.

7.
Antioxidants (Basel) ; 9(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429305

RESUMO

The structural integrity, elasticity, and fluidity of lipid membranes are critical for cellular activities such as communication between cells, exocytosis, and endocytosis. Unsaturated lipids, the main components of biological membranes, are particularly susceptible to the oxidative attack of reactive oxygen species. The peroxidation of unsaturated lipids, in our case 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), induces the structural reorganization of the membrane. We have employed a multi-technique approach to analyze typical properties of lipid bilayers, i.e., roughness, thickness, elasticity, and fluidity. We compared the alteration of the membrane properties upon initiated lipid peroxidation and examined the ability of flavonols, namely quercetin (QUE), myricetin (MCE), and myricitrin (MCI) at different molar fractions, to inhibit this change. Using Mass Spectrometry (MS) and Fourier Transform Infrared Spectroscopy (FTIR), we identified various carbonyl products and examined the extent of the reaction. From Atomic Force Microscopy (AFM), Force Spectroscopy (FS), Small Angle X-Ray Scattering (SAXS), and Electron Paramagnetic Resonance (EPR) experiments, we concluded that the membranes with inserted flavonols exhibit resistance against the structural changes induced by the oxidative attack, which is a finding with multiple biological implications. Our approach reveals the interplay between the flavonol molecular structure and the crucial membrane properties under oxidative attack and provides insight into the pathophysiology of cellular oxidative injury.

8.
Food Chem Toxicol ; 144: 111621, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32738372

RESUMO

Selenium nanoparticles (SeNPs) were first designed as nutritional supplements, but they are attractive also for use in diagnostic and therapeutic systems owing to their biocompatibility and protective effects. This study aimed to examine if different SeNPs stabilization strategies affect their (i) antimicrobial activity against bacteria Escherichia coli and Staphylococcus aureus and yeast Saccharomyces cerevisiae and (ii) toxicity to human cells of different biological barriers i.e., skin, oral and intestinal mucosa. For surface stabilization, polyvinylpyrrolidone (PVP), poly-L-lysine (PLL) and polyacrylic acid (PAA) were used rendering neutral, positively and negatively charged SeNPs, respectively. The SeNPs (primary size ~80 nm) showed toxic effects in human cells in vitro and in bacteria S. aureus, but not in E. coli and yeast S. cerevisiae. Toxicity of SeNPs (24 h IC50) ranged from 1.4 to >100 mg Se/L, depending on surface functionalization (PLL > PAA > PVP) and was not caused by ionic Se. At subtoxic concentrations, all SeNPs were taken up by all human cell types, induced oxidative stress response and demonstrated genotoxicity. As the safety profile of SeNPs was dependent not only on target cells (mammalian cells, bacteria, yeast), but also on surface functionalization, these aspects should be considered during development of novel SeNPs-based biomedical products.


Assuntos
Anti-Infecciosos/farmacologia , Endocitose/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Selênio/química , Linhagem Celular , Ensaio Cometa , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
9.
Chemosphere ; 250: 126265, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32109702

RESUMO

This study, motivated to fill the knowledge gap on environmental safety of selenium nanoparticles (SeNPs), provides information on the stability and environmental safety of four differently coated SeNPs rendering both positive and negative surface charges. The stability and dissolution behaviour of SeNPs were determined in an aquatic model media of different ionic strength to provide information regarding the environmental fate of SeNPs in different environmental conditions. The environmental safety of SeNPs was evaluated by acute regulatory toxicity tests using Daphina magna and Vibrio fischeri as model organisms. Agglomeration was observed for all studied SeNPs in test media with higher ionic strength caused by the disruption of surface charge leading to electrostatic instability. Toxicity of SeNPs on both aquatic species was dose-dependent and increased with exposure time. The obtained data indicated that all of the tested SeNPs could be classified as harmful to the natural bacteria V. fischeri and harmful to toxic to crustaceans D. magna, but dependent on the coating agent used for SeNPs stabilization. Although SeNPs have attracted great interest for use in biomedicine, this study demonstrated that their ecotoxicological effects should be considered during the design of new of SeNPs-based products.


Assuntos
Exposição Ambiental , Nanopartículas/toxicidade , Selênio/toxicidade , Aliivibrio fischeri , Animais , Daphnia , Ecotoxicologia , Testes de Toxicidade Aguda
10.
Aquat Toxicol ; 207: 52-62, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30521985

RESUMO

This paper aims to evaluate the effects of a product containing colloidal silver in the aquatic environment, using duckweed Lemna gibba as a model plant. Therefore, growth parameters, photosynthetic pigments content and protein content as physiological indices were evaluated. Changes in the content of non-enzymatic antioxidants and activity of several antioxidant enzymes, alongside with the accumulation of hydrogen peroxide and lipid peroxidation end-products were assessed to explore the potential of colloidal silver to induce oxidative stress. The commercially available colloidal silver product contained a primary soluble form of silver. The treatment with colloidal silver resulted in significant physiological and biochemical changes in L. gibba plants and a consequent reduction of growth. Accumulation of silver caused altered nutrient balance in the plants as well as a significant decrease in photosynthetic pigments content and protein concentration. The antioxidative response of L. gibba plants to treatment with colloidal silver was inadequate to protect the plants from oxidative stress caused by metal accumulation. Silver caused concentration-dependent and time-dependent hydrogen peroxide accumulation as well as the elevation of lipid peroxidation levels in L. gibba plants. The use of commercially available products containing colloidal silver, and consequent accumulation of silver, both ionic and nanoparticle form in the environment, represents a potential source of toxicity to primary producers in the aquatic ecosystem.


Assuntos
Organismos Aquáticos/metabolismo , Organismos Aquáticos/fisiologia , Araceae/metabolismo , Araceae/fisiologia , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Araceae/efeitos dos fármacos , Araceae/crescimento & desenvolvimento , Ácido Ascórbico/metabolismo , Difusão Dinâmica da Luz , Sequestradores de Radicais Livres/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Minerais/análise , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA