Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 10(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35208741

RESUMO

As the incidence of Campylobacter jejuni and campylobacteriosis grows, so does the need for a better understanding and control of this pathogen. We studied the interactions of C. jejuni NCTC 11168 and a potential probiotic, Bacillus subtilis PS-216, in cocultures at different starting ratios and temperatures (20 °C, 37 °C, 42 °C), under different atmospheres (aerobic, microaerobic), and in different growth media (Mueller-Hinton, chicken litter medium, chicken intestinal-content medium). Under microaerobic conditions, B. subtilis effectively inhibited the growth of C. jejuni at 42 °C (log reduction, 4.19), even when C. jejuni counts surpassed B. subtilis by 1000-fold in the starting inoculum. This inhibition was weaker at 37 °C (log reduction, 1.63), while no impact on CFUs was noted at 20 °C, which is a temperature nonpermissive of C. jejuni growth. Under aerobic conditions, B. subtilis supported C. jejuni survival. B. subtilis PS-216 inhibited the growth of C. jejuni in sterile chicken litter (4.07 log reduction) and in sterile intestinal content (2.26 log reduction). In nonsterile intestinal content, B. subtilis PS-216 was able to grow, to a lesser extent, compared to Mueller-Hinton media, still showing potential as a chicken probiotic that could be integrated into the chicken intestinal microbiota. This study showed the strong influence of environmental parameters on the variability of C. jejuni and B. subtilis interactions. Furthermore, B. subtilis PS-216 antagonism was strongest against C. jejuni NCTC 11168 under conditions that might represent conditions in the chicken environment (42 °C, microaerobic atmosphere, chicken litter medium).

2.
Microbiol Spectr ; 10(6): e0183622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36342318

RESUMO

Salmonella enterica is one of the most common foodborne pathogens and, due to the spread of antibiotic resistance, new antimicrobial strategies are urgently needed to control it. In this study, we explored the probiotic potential of Bacillus subtilis PS-216 and elucidated the mechanisms that underlie the interactions between this soil isolate and the model pathogenic strain S. Typhimurium SL1344. The results reveal that B. subtilis PS-216 inhibits the growth and biofilm formation of S. Typhimurium through the production of the pks cluster-dependent polyketide bacillaene. The presence of S. Typhimurium enhanced the activity of the PpksC promoter that controls bacillaene production, suggesting that B. subtilis senses and responds to Salmonella. The level of Salmonella inhibition, overall PpksC activity, and PpksC induction by Salmonella were all higher in nutrient-rich conditions than in nutrient-depleted conditions. Although eliminating the extracellular polysaccharide production of B. subtilis via deletion of the epsA-O operon had no significant effect on inhibitory activity against Salmonella in nutrient-rich conditions, this deletion mutant showed an enhanced antagonism against Salmonella in nutrient-depleted conditions, revealing an intricate relationship between exopolysaccharide production, nutrient availability, and bacillaene synthesis. Overall, this work provides evidence on the regulatory role of nutrient availability, sensing of the competitor, and EpsA-O polysaccharide in the social outcome of bacillaene-dependent competition between B. subtilis and S. Typhimurium. IMPORTANCE Probiotic bacteria represent an alternative for controlling foodborne disease caused by Salmonella enterica, which constitutes a serious concern during food production due to its antibiotic resistance and resilience to environmental stress. Bacillus subtilis is gaining popularity as a probiotic, but its behavior in biofilms with pathogens such as Salmonella remains to be elucidated. Here, we show that the antagonism of B. subtilis is mediated by the polyketide bacillaene and that the production of bacillaene is a highly dynamic trait which depends on environmental factors such as nutrient availability and the presence of competitors. Moreover, the production of extracellular polysaccharides by B. subtilis further alters the influence of these factors. Hence, this work highlights the inhibitory effect of B. subtilis, which is condition-dependent, and the importance of evaluating probiotic strains under conditions relevant to the intended use.


Assuntos
Policetídeos , Salmonella enterica , Salmonella typhimurium , Bacillus subtilis , Biofilmes , Nutrientes , Policetídeos/farmacologia
3.
Front Microbiol ; 13: 910616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875550

RESUMO

Campylobacter jejuni is the leading cause of bacterial gastroenteritis, or campylobacteriosis, in humans worldwide, and poultry serves as a major source of infection. To reduce the risk associated with C. jejuni transmission via poultry meat, effective interventions during poultry production are needed, and the use of probiotics is a promising approach. In this study, 15 Bacillus subtilis strains were initially screened for their anti-Campylobacter activities. B. subtilis PS-216 strain demonstrated the best anti-Campylobacter activity against 15 C. jejuni isolates when examined using in vitro co-cultures. To evaluate the suitability of B. subtilis PS-216 for probiotic use, its susceptibility to eight clinically important antimicrobials and simulated gastric conditions was investigated. B. subtilis PS-216 was sensitive to all of the tested antibiotics. Although vegetative cells were sensitive to gastric conditions, B. subtilis PS-216 spores were highly resistant. We further evaluated the use of a B. subtilis PS-216 spore preparation (2.5 × 106 CFU/mL water) to prevent and/or reduce C. jejuni colonization in broiler chickens in vivo. Compared to the untreated group, significantly lower Campylobacter counts were detected in caeca of broilers continuously treated with B. subtilis PS-216 spores in their drinking water. Furthermore, broilers continuously treated with B. subtilis PS-216 spores showed improved weight gain, compared to the control group. Together, these results demonstrate the potential of B. subtilis PS-216 for use in poultry to reduce C. jejuni colonization and improve weight gain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA