Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Mol Cell ; 65(3): 403-415.e8, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132841

RESUMO

Cell-autonomous induction of type I interferon must be stringently regulated. Rapid induction is key to control virus infection, whereas proper limitation of signaling is essential to prevent immunopathology and autoimmune disease. Using unbiased kinome-wide RNAi screening followed by thorough validation, we identified 22 factors that regulate RIG-I/IRF3 signaling activity. We describe a negative-feedback mechanism targeting RIG-I activity, which is mediated by death associated protein kinase 1 (DAPK1). RIG-I signaling triggers DAPK1 kinase activation, and active DAPK1 potently inhibits RIG-I stimulated IRF3 activity and interferon-beta production. DAPK1 phosphorylates RIG-I in vitro at previously reported as well as other sites that limit 5'ppp-dsRNA sensing and virtually abrogate RIG-I activation.


Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , RNA Interferente Pequeno/genética , Receptores do Ácido Retinoico/metabolismo , Células A549 , Animais , Células Cultivadas , Retroalimentação Fisiológica , Células HEK293 , Humanos , Camundongos , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais
2.
J Cell Sci ; 133(11)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32295847

RESUMO

3D cell cultures enable the in vitro study of dynamic biological processes such as the cell cycle, but their use in high-throughput screens remains impractical with conventional fluorescent microscopy. Here, we present a screening workflow for the automated evaluation of mitotic phenotypes in 3D cell cultures by light-sheet microscopy. After sample preparation by a liquid handling robot, cell spheroids are imaged for 24 h in toto with a dual-view inverted selective plane illumination microscope (diSPIM) with a much improved signal-to-noise ratio, higher imaging speed, isotropic resolution and reduced light exposure compared to a spinning disc confocal microscope. A dedicated high-content image processing pipeline implements convolutional neural network-based phenotype classification. We illustrate the potential of our approach using siRNA knockdown and epigenetic modification of 28 mitotic target genes for assessing their phenotypic role in mitosis. By rendering light-sheet microscopy operational for high-throughput screening applications, this workflow enables target gene characterization or drug candidate evaluation in tissue-like 3D cell culture models.


Assuntos
Processamento de Imagem Assistida por Computador , Esferoides Celulares , Microscopia de Fluorescência , Mitose , Fenótipo
3.
Mol Ther ; 28(4): 1016-1032, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32105604

RESUMO

Display of short peptides on the surface of adeno-associated viruses (AAVs) is a powerful technology for the generation of gene therapy vectors with altered cell specificities and/or transduction efficiencies. Following its extensive prior use in the best characterized AAV serotype 2 (AAV2), recent reports also indicate the potential of other AAV isolates as scaffolds for peptide display. In this study, we systematically explored the respective capacities of 13 different AAV capsid variants to tolerate 27 peptides inserted on the surface followed by production of reporter-encoding vectors. Single-round screening in pre-arrayed 96-well plates permitted rapid and simple identification of superior vectors in >90 cell types, including T cells and primary cells. Notably, vector performance depended not only on the combination of capsid, peptide, and cell type, but also on the position of the inserted peptide and the nature of flanking residues. For optimal data availability and accessibility, all results were assembled in a searchable online database offering multiple output styles. Finally, we established a reverse-transduction pipeline based on vector pre-spotting in 96- or 384-well plates that facilitates high-throughput library panning. Our comprehensive illustration of the vast potential of alternative AAV capsids for peptide display should accelerate their in vivo screening and application as unique gene therapy vectors.


Assuntos
Dependovirus/genética , Peptídeos/metabolismo , Análise Serial de Tecidos/métodos , Terapia Genética , Vetores Genéticos , Humanos , Biblioteca de Peptídeos , Peptídeos/genética , Transdução Genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Genome Res ; 27(10): 1752-1758, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28874398

RESUMO

Delivery of large and functionally active biomolecules across cell membranes presents a challenge in cell biological experimentation. For this purpose, we developed a novel solid-phase reverse transfection method that is suitable for the intracellular delivery of proteins into mammalian cells with preservation of their function. We show results for diverse application areas of the method, ranging from antibody-mediated inhibition of protein function to CRISPR/Cas9-based gene editing in living cells. Our method enables prefabrication of "ready to transfect" substrates carrying diverse proteins. This allows their easy distribution and standardization of biological assays across different laboratories.


Assuntos
Anticorpos/farmacologia , Sistemas CRISPR-Cas , Edição de Genes/métodos , Transfecção/métodos , Células HEK293 , Células HeLa , Humanos
5.
Methods ; 114: 60-73, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27725304

RESUMO

The microscopic analysis of telomere features provides a wealth of information on the mechanism by which tumor cells maintain their unlimited proliferative potential. Accordingly, the analysis of telomeres in tissue sections of patient tumor samples can be exploited to obtain diagnostic information and to define tumor subgroups. In many instances, however, analysis of the image data is conducted by manual inspection of 2D images at relatively low resolution for only a small part of the sample. As the telomere feature signal distribution is frequently heterogeneous, this approach is prone to a biased selection of the information present in the image and lacks subcellular details. Here we address these issues by using an automated high-resolution imaging and analysis workflow that quantifies individual telomere features on tissue sections for a large number of cells. The approach is particularly suited to assess telomere heterogeneity and low abundant cellular subpopulations with distinct telomere characteristics in a reproducible manner. It comprises the integration of multi-color fluorescence in situ hybridization, immunofluorescence and DNA staining with targeted automated 3D fluorescence microscopy and image analysis. We apply our method to telomeres in glioblastoma and prostate cancer samples, and describe how the imaging data can be used to derive statistically reliable information on telomere length distribution or colocalization with PML nuclear bodies. We anticipate that relating this approach to clinical outcome data will prove to be valuable for pretherapeutic patient stratification.


Assuntos
Glioblastoma/genética , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Neoplasias da Próstata/genética , Telômero , Automação , Criança , Imunofluorescência , Glioblastoma/patologia , Humanos , Hibridização in Situ Fluorescente , Masculino , Microscopia Confocal , Inclusão em Parafina , Neoplasias da Próstata/patologia , Fluxo de Trabalho
6.
J Cell Sci ; 128(10): 1887-900, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25908860

RESUMO

The alternative lengthening of telomeres (ALT) mechanism allows cancer cells to escape senescence and apoptosis in the absence of active telomerase. A characteristic feature of this pathway is the assembly of ALT-associated promyelocytic leukemia (PML) nuclear bodies (APBs) at telomeres. Here, we dissected the role of APBs in a human ALT cell line by performing an RNA interference screen using an automated 3D fluorescence microscopy platform and advanced 3D image analysis. We identified 29 proteins that affected APB formation, which included proteins involved in telomere and chromatin organization, protein sumoylation and DNA repair. By integrating and extending these findings, we found that APB formation induced clustering of telomere repeats, telomere compaction and concomitant depletion of the shelterin protein TRF2 (also known as TERF2). These APB-dependent changes correlated with the induction of a DNA damage response at telomeres in APBs as evident by a strong enrichment of the phosphorylated form of the ataxia telangiectasia mutated (ATM) kinase. Accordingly, we propose that APBs promote telomere maintenance by inducing a DNA damage response in ALT-positive tumor cells through changing the telomeric chromatin state to trigger ATM phosphorylation.


Assuntos
Dano ao DNA , Leucemia Promielocítica Aguda/genética , Proteínas Nucleares/genética , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Linhagem Celular Tumoral , Reparo do DNA , Humanos , Leucemia Promielocítica Aguda/metabolismo , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica , Transdução de Sinais , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
PLoS Pathog ; 11(12): e1005281, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26625259

RESUMO

Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Sumoilação/genética , Transdução Genética , Sequência de Bases , Western Blotting , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , RNA Interferente Pequeno/genética , Transfecção
8.
PLoS Pathog ; 11(1): e1004573, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569684

RESUMO

Hepatitis C virus (HCV) is a major cause of chronic liver disease affecting around 130 million people worldwide. While great progress has been made to define the principle steps of the viral life cycle, detailed knowledge how HCV interacts with its host cells is still limited. To overcome this limitation we conducted a comprehensive whole-virus RNA interference-based screen and identified 40 host dependency and 16 host restriction factors involved in HCV entry/replication or assembly/release. Of these factors, heterogeneous nuclear ribonucleoprotein K (HNRNPK) was found to suppress HCV particle production without affecting viral RNA replication. This suppression of virus production was specific to HCV, independent from assembly competence and genotype, and not found with the related Dengue virus. By using a knock-down rescue approach we identified the domains within HNRNPK required for suppression of HCV particle production. Importantly, HNRNPK was found to interact specifically with HCV RNA and this interaction was impaired by mutations that also reduced the ability to suppress HCV particle production. Finally, we found that in HCV-infected cells, subcellular distribution of HNRNPK was altered; the protein was recruited to sites in close proximity of lipid droplets and colocalized with core protein as well as HCV plus-strand RNA, which was not the case with HNRNPK variants unable to suppress HCV virion formation. These results suggest that HNRNPK might determine efficiency of HCV particle production by limiting the availability of viral RNA for incorporation into virions. This study adds a new function to HNRNPK that acts as central hub in the replication cycle of multiple other viruses.


Assuntos
Hepacivirus/fisiologia , Ribonucleoproteínas/fisiologia , Vírion/fisiologia , Montagem de Vírus/genética , Células Cultivadas , Células HEK293 , Hepacivirus/efeitos dos fármacos , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Humanos , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/farmacologia , RNA Viral/metabolismo , Ribonucleoproteínas/antagonistas & inibidores , Vírion/efeitos dos fármacos , Montagem de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
9.
J Biol Chem ; 290(6): 3654-65, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25533462

RESUMO

Previous studies proposed a role for the Na/K-ATPase in unconventional secretion of fibroblast growth factor 2 (FGF2). This conclusion was based upon pharmacological inhibition of FGF2 secretion in the presence of ouabain. However, neither independent experimental evidence nor a potential mechanism was provided. Based upon an unbiased RNAi screen, we now report the identification of ATP1A1, the α1-chain of the Na/K-ATPase, as a factor required for efficient secretion of FGF2. As opposed to ATP1A1, down-regulation of the ß1- and ß3-chains (ATP1B1 and ATP1B3) of the Na/K-ATPase did not affect FGF2 secretion, suggesting that they are dispensable for this process. These findings indicate that it is not the membrane potential-generating function of the Na/K-ATPase complex but rather a so far unidentified role of potentially unassembled α1-chains that is critical for unconventional secretion of FGF2. Consistently, in the absence of ß-chains, we found a direct interaction between the cytoplasmic domain of ATP1A1 and FGF2 with submicromolar affinity. Based upon these observations, we propose that ATP1A1 is a recruitment factor for FGF2 at the inner leaflet of plasma membranes that may control phosphatidylinositol 4,5-bisphosphate-dependent membrane translocation as part of the unconventional secretory pathway of FGF2.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Via Secretória , ATPase Trocadora de Sódio-Potássio/metabolismo , Células HeLa , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética
10.
J Cell Sci ; 127(Pt 11): 2433-47, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24659801

RESUMO

α2ß1 integrin is one of the most important collagen-binding receptors, and it has been implicated in numerous thrombotic and immune diseases. α2ß1 integrin is a potent tumour suppressor, and its downregulation is associated with increased metastasis and poor prognosis in breast cancer. Currently, very little is known about the mechanism that regulates the cell-surface expression and trafficking of α2ß1 integrin. Here, using a quantitative fluorescence-microscopy-based RNAi assay, we investigated the impact of 386 cytoskeleton-associated or -regulatory genes on α2 integrin endocytosis and found that 122 of these affected the intracellular accumulation of α2 integrin. Of these, 83 were found to be putative regulators of α2 integrin trafficking and/or expression, with no observed effect on the internalization of epidermal growth factor (EGF) or transferrin. Further interrogation and validation of the siRNA screen revealed a role for KIF15, a microtubule-based molecular motor, as a significant inhibitor of the endocytic trafficking of α2 integrin. Our data suggest a novel role for KIF15 in mediating plasma membrane localization of the alternative clathrin adaptor Dab2, thus impinging on pathways that regulate α2 integrin internalization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/genética , Membrana Celular/metabolismo , Integrina alfa2beta1/metabolismo , Cinesinas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Reguladoras de Apoptose , Colágeno/metabolismo , Citoesqueleto/genética , Endocitose/genética , Feminino , Testes Genéticos/métodos , Células HeLa , Humanos , Integrina alfa2beta1/genética , Cinesinas/genética , Microscopia de Fluorescência , Metástase Neoplásica , Ligação Proteica/genética , Transporte Proteico/genética , Interferência de RNA , RNA Interferente Pequeno/genética
11.
Cardiovasc Drugs Ther ; 30(3): 281-95, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27095116

RESUMO

PURPOSE: Understanding of the mechanisms of vascular smooth muscle cells (VSMCs) phenotypic regulation is critically important to identify novel candidates for future therapeutic intervention. While HTS approaches have recently been used to identify novel regulators in many cell lines, such as cancer cells and hematopoietic stem cells, no studies have so far systematically investigated the effect of gene inactivation on VSMCs with respect to cell survival and growth response. METHODS AND RESULTS: 257 out of 2000 genes tested resulted in an inhibition of cell proliferation in HaoSMCs. After pathway analysis, 38 significant genes were selected for further study. 23 genes were confirmed to inhibit proliferation, and 13 genes found to induce apoptosis in the synthetic phenotype. 11 genes led to an aberrant nuclear phenotype indicating a central role in cell mitosis. 4 genes affected the cell migration in synthetic HaoSMCs. Using computational biological network analysis, 11 genes were identified to have an indirect or direct interaction with the Osteopontin pathway. For 10 of those genes, levels of proteins downstream of the Osteopontin pathway were found to be down-regulated, using RNAi methodology. CONCLUSIONS: A phenotypic high-throughput siRNA screen could be applied to identify genes relevant for the cell biology of HaoSMCs. Novel genes were identified which play a role in proliferation, apoptosis, mitosis and migration of HaoSMCs. These may represent potential drug candidates in the future.


Assuntos
Aorta/citologia , Miócitos de Músculo Liso/metabolismo , Osteopontina/metabolismo , Apoptose , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos , Osteopontina/genética , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais
12.
Nature ; 464(7289): 721-7, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20360735

RESUMO

Despite our rapidly growing knowledge about the human genome, we do not know all of the genes required for some of the most basic functions of life. To start to fill this gap we developed a high-throughput phenotypic screening platform combining potent gene silencing by RNA interference, time-lapse microscopy and computational image processing. We carried out a genome-wide phenotypic profiling of each of the approximately 21,000 human protein-coding genes by two-day live imaging of fluorescently labelled chromosomes. Phenotypes were scored quantitatively by computational image processing, which allowed us to identify hundreds of human genes involved in diverse biological functions including cell division, migration and survival. As part of the Mitocheck consortium, this study provides an in-depth analysis of cell division phenotypes and makes the entire high-content data set available as a resource to the community.


Assuntos
Divisão Celular/genética , Genoma Humano/genética , Microscopia de Fluorescência/métodos , Fenótipo , Animais , Movimento Celular/genética , Sobrevivência Celular/genética , Cor , Técnicas de Silenciamento de Genes , Genes/genética , Células HeLa , Humanos , Cinética , Camundongos , Mitose/genética , Interferência de RNA , Reprodutibilidade dos Testes , Fuso Acromático/genética , Fuso Acromático/metabolismo , Fatores de Tempo
13.
J Neurosci ; 34(32): 10659-74, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25100599

RESUMO

The role of neuronal noncoding RNAs in energy control of the body is not fully understood. The arcuate nucleus (ARC) of the hypothalamus comprises neurons regulating food intake and body weight. Here we show that Dicer-dependent loss of microRNAs in these neurons of adult (DicerCKO) mice causes chronic overactivation of the signaling pathways involving phosphatidylinositol-3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) and an imbalance in the levels of neuropeptides, resulting in severe hyperphagic obesity. Similarly, the activation of PI3K-Akt-mTOR pathway due to Pten deletion in the adult forebrain leads to comparable weight increase. Conversely, the mTORC1 inhibitor rapamycin normalizes obesity in mice with an inactivated Dicer1 or Pten gene. Importantly, the continuous delivery of oligonucleotides mimicking microRNAs, which are predicted to target PI3K-Akt-mTOR pathway components, to the hypothalamus attenuates adiposity in DicerCKO mice. Furthermore, loss of miR-103 causes strong upregulation of the PI3K-Akt-mTOR pathway in vitro and its application into the ARC of the Dicer-deficient mice both reverses upregulation of Pik3cg, the mRNA encoding the catalytic subunit p110γ of the PI3K complex, and attenuates the hyperphagic obesity. Our data demonstrate in vivo the crucial role of neuronal microRNAs in the control of energy homeostasis.


Assuntos
Hiperfagia/complicações , Hipotálamo/metabolismo , MicroRNAs/metabolismo , Obesidade/etiologia , Obesidade/patologia , Absorciometria de Fóton , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Células HeLa , Humanos , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Proteína Oncogênica v-akt/metabolismo , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ribonuclease III/deficiência , Ribonuclease III/genética , Serina-Treonina Quinases TOR/metabolismo , Transdução Genética
14.
Nucleic Acids Res ; 41(21): e199, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24049077

RESUMO

As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems.


Assuntos
Proteínas Argonautas/genética , Técnicas de Silenciamento de Genes , Vetores Genéticos , Interferência de RNA , Animais , Proteínas Argonautas/metabolismo , Linhagem Celular Tumoral , Dependovirus/genética , Células HEK293 , Humanos , Lentivirus/genética , Fígado/metabolismo , Camundongos , Fenótipo , Plasmídeos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução Genética
15.
Traffic ; 13(3): 416-32, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22132776

RESUMO

We applied fluorescence microscopy-based quantitative assays to living cells to identify regulators of endoplasmic reticulum (ER)-to-Golgi trafficking and/or Golgi complex maintenance. We first validated an automated procedure to identify factors which influence Golgi-to-ER relocalization of GalT-CFP (ß1,4-galactosyltransferase I-cyan fluorescent protein) after brefeldin A (BFA) addition and/or wash-out. We then tested 14 proteins that localize to the ER and/or Golgi complex when overexpressed for a role in ER-to-Golgi trafficking. Nine of them interfered with the rate of BFA-induced redistribution of GalT-CFP from the Golgi complex to the ER, six of them interfered with GalT-CFP redistribution from the ER to a juxtanuclear region (i.e. the Golgi complex) after BFA wash-out and six of them were positive effectors in both assays. Notably, our live-cell approach captures regulator function in ER-to-Golgi trafficking, which was missed in previous fixed cell assays, as well as assigns putative roles for other less characterized proteins. Moreover, we show that our assays can be extended to RNAi and chemical screens.


Assuntos
Bioensaio/métodos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Animais , Células Cultivadas , Rim/citologia , Microscopia de Fluorescência , Transporte Proteico , Ratos
16.
Genome Res ; 21(11): 1955-68, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21795383

RESUMO

SRC proteins are non-receptor tyrosine kinases that play key roles in regulating signal transduction by a diverse set of cell surface receptors. They contain N-terminal SH4 domains that are modified by fatty acylation and are functioning as membrane anchors. Acylated SH4 domains are both necessary and sufficient to mediate specific targeting of SRC kinases to the inner leaflet of plasma membranes. Intracellular transport of SRC kinases to the plasma membrane depends on microdomains into which SRC kinases partition upon palmitoylation. In the present study, we established a live-cell imaging screening system to identify gene products involved in plasma membrane targeting of SRC kinases. Based on siRNA arrays and a human model cell line expressing two kinds of SH4 reporter molecules, we conducted a genome-wide analysis of SH4-dependent protein targeting using an automated microscopy platform. We identified and validated 54 gene products whose down-regulation causes intracellular retention of SH4 reporter molecules. To detect and quantify this phenotype, we developed a software-based image analysis tool. Among the identified gene products, we found factors involved in lipid metabolism, intracellular transport, and cellular signaling processes. Furthermore, we identified proteins that are either associated with SRC kinases or are related to various known functions of SRC kinases such as other kinases and phosphatases potentially involved in SRC-mediated signal transduction. Finally, we identified gene products whose function is less defined or entirely unknown. Our findings provide a major resource for future studies unraveling the molecular mechanisms that underlie proper targeting of SRC kinases to the inner leaflet of plasma membranes.


Assuntos
Membrana Celular/enzimologia , Genoma Humano , Fenótipo , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , Proteína Coatomer/genética , Proteína Coatomer/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala , Homeostase , Humanos , Espaço Intracelular/metabolismo , Metabolismo dos Lipídeos , Lipoilação , Domínios e Motivos de Interação entre Proteínas , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-yes/metabolismo , RNA Interferente Pequeno , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Quinases da Família src/genética
17.
Histochem Cell Biol ; 141(6): 597-603, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24647616

RESUMO

We have developed a method to perform microscopic temporal and spacial multi-scale experiments by imaging cellular phenotypes of interest on complementary fluorescence microscopy systems. In a low-resolution fast data acquisition screen for phenotypic cellular responses induced by small interfering RNA (siRNA), cells in spots of siRNA cell arrays showing characteristic alterations have been selected automatically by feature space analysis. These objects were imaged on a second super-resolution dSTORM microscope (direct stochastic optical reconstruction microscopy). The coordinate transfer was based on fixed cells as reference points without the use of additional fiducial markers. This procedure is suitable to combine any kind of fluorescence microscopy technique, in order to gain further insights on the observed specimen at multiple temporal or special scales.


Assuntos
Microscopia de Fluorescência/métodos , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Células HeLa , Humanos , Microscopia de Fluorescência/instrumentação , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas
18.
Bioorg Med Chem Lett ; 24(19): 4694-4698, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25176331

RESUMO

Phosphorothioates are excellent antisense inhibitors, which are active both in cells and in vivo. Since their affinity to complementary ribonucleic acids is rather low, long strands (⩾20-mers) are typically required to achieve the desired biological activity. However, mismatch discrimination of long inhibitors is reduced. In contrast, shorter phosphorothioates exhibit better sequence specificity, but have in most cases too low affinity for practical applications in cells. We screened a range of terminal modifiers of a 14-mer phosphorothioate sequence, which is complementary to mRNA of a representative gene, whose protein product is fluorescent (DsRed2) and easy to monitor in cells. We found that optimal combinations of 5'- and 3'-modifications include 5'-trimethoxystilbene with 3'-uracil(anthraquinone)-cap, 5'-chloic acid derivative with 3'-uracyl(anthraquinone)-cap and 5'-cholic acid derivative with three 3'-LNA moieties. In contrast to the LNA, stabilizing and activity-enhancing effects of other mentioned modifiers for PTO/RNA duplexes have not been previously reported. We observed that the 14-mer inhibitor carrying 5'-cholic acid derivative with three 3'-LNA moieties inhibits expression of DsRed2 in cells stronger than the unmodified 21-mer. Mismatch discrimination of this inhibitor was found to be comparable to that of the unmodified 14-mer.


Assuntos
Proteínas Luminescentes/antagonistas & inibidores , Oligonucleotídeos Fosforotioatos/farmacologia , RNA Mensageiro/antagonistas & inibidores , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Células HeLa , Humanos , Proteínas Luminescentes/genética , Estrutura Molecular , Oligonucleotídeos Fosforotioatos/síntese química , Oligonucleotídeos Fosforotioatos/química , RNA Mensageiro/genética , Relação Estrutura-Atividade , Proteína Vermelha Fluorescente
19.
Front Microbiol ; 14: 1193320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342561

RESUMO

Expanding antiviral treatment options against SARS-CoV-2 remains crucial as the virus evolves under selection pressure which already led to the emergence of several drug resistant strains. Broad spectrum host-directed antivirals (HDA) are promising therapeutic options, however the robust identification of relevant host factors by CRISPR/Cas9 or RNA interference screens remains challenging due to low consistency in the resulting hits. To address this issue, we employed machine learning, based on experimental data from several knockout screens and a drug screen. We trained classifiers using genes essential for virus life cycle obtained from the knockout screens. The machines based their predictions on features describing cellular localization, protein domains, annotated gene sets from Gene Ontology, gene and protein sequences, and experimental data from proteomics, phospho-proteomics, protein interaction and transcriptomic profiles of SARS-CoV-2 infected cells. The models reached a remarkable performance suggesting patterns of intrinsic data consistency. The predicted HDF were enriched in sets of genes particularly encoding development, morphogenesis, and neural processes. Focusing on development and morphogenesis-associated gene sets, we found ß-catenin to be central and selected PRI-724, a canonical ß-catenin/CBP disruptor, as a potential HDA. PRI-724 limited infection with SARS-CoV-2 variants, SARS-CoV-1, MERS-CoV and IAV in different cell line models. We detected a concentration-dependent reduction in cytopathic effects, viral RNA replication, and infectious virus production in SARS-CoV-2 and SARS-CoV-1-infected cells. Independent of virus infection, PRI-724 treatment caused cell cycle deregulation which substantiates its potential as a broad spectrum antiviral. Our proposed machine learning concept supports focusing and accelerating the discovery of host dependency factors and identification of potential host-directed antivirals.

20.
Traffic ; 11(6): 813-26, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20230531

RESUMO

Fibroblast growth factor 2 (FGF2) is a potent mitogen that is exported from cells by an endoplasmic reticulum (ER)/Golgi-independent mechanism. Unconventional secretion of FGF2 occurs by direct translocation across plasma membranes, a process that depends on the phosphoinositide phosphatidylinositol 4,5-biphosphate (PI(4,5)P(2)) at the inner leaflet as well as heparan sulfate proteoglycans at the outer leaflet of plasma membranes; however, additional core and regulatory components of the FGF2 export machinery have remained elusive. Here, using a highly effective RNAi screening approach, we discovered Tec kinase as a novel factor involved in unconventional secretion of FGF2. Tec kinase does not affect FGF2 secretion by an indirect mechanism, but rather forms a heterodimeric complex with FGF2 resulting in phosphorylation of FGF2 at tyrosine 82, a post-translational modification shown to be essential for FGF2 membrane translocation to cell surfaces. Our findings suggest a crucial role for Tec kinase in regulating FGF2 secretion under various physiological conditions and, therefore, provide a new perspective for the development of a novel class of antiangiogenic drugs targeting the formation of the FGF2/Tec complex.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Células 3T3 , Animais , Membrana Celular/metabolismo , Células HeLa , Humanos , Camundongos , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/química , Fosforilação , Transporte Proteico , Proteínas/química , Interferência de RNA , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA