Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 614(7948): 509-520, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543322

RESUMO

The segmented body plan of vertebrates is established during somitogenesis, a well-studied process in model organisms; however, the details of this process in humans remain largely unknown owing to ethical and technical limitations. Despite recent advances with pluripotent stem cell-based approaches1-5, models that robustly recapitulate human somitogenesis in both space and time remain scarce. Here we introduce a pluripotent stem cell-derived mesoderm-based 3D model of human segmentation and somitogenesis-which we termed 'axioloid'-that captures accurately the oscillatory dynamics of the segmentation clock and the morphological and molecular characteristics of sequential somite formation in vitro. Axioloids show proper rostrocaudal patterning of forming segments and robust anterior-posterior FGF-WNT signalling gradients and retinoic acid signalling components. We identify an unexpected critical role of retinoic acid signalling in the stabilization of forming segments, indicating distinct, but also synergistic effects of retinoic acid and extracellular matrix on the formation and epithelialization of somites. Comparative analysis demonstrates marked similarities of axioloids to the human embryo, further validated by the presence of a Hox code in axioloids. Finally, we demonstrate the utility of axioloids for studying the pathogenesis of human congenital spine diseases using induced pluripotent stem cells with mutations in HES7 and MESP2. Our results indicate that axioloids represent a promising platform for the study of axial development and disease in humans.


Assuntos
Padronização Corporal , Técnicas de Cultura de Células em Três Dimensões , Somitos , Humanos , Padronização Corporal/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Mutação , Somitos/citologia , Somitos/efeitos dos fármacos , Somitos/embriologia , Somitos/metabolismo , Doenças da Coluna Vertebral/patologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos
2.
Proc Biol Sci ; 282(1805)2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25788604

RESUMO

Ray-finned fishes (Actinopterygii) are the dominant vertebrate group today (+30 000 species, predominantly teleosts), with great morphological diversity, including their dentitions. How dental morphological variation evolved is best addressed by considering a range of taxa across actinopterygian phylogeny; here we examine the dentition of Polyodon spathula (American paddlefish), assigned to the basal group Acipenseriformes. Although teeth are present and functional in young individuals of Polyodon, they are completely absent in adults. Our current understanding of developmental genes operating in the dentition is primarily restricted to teleosts; we show that shh and bmp4, as highly conserved epithelial and mesenchymal genes for gnathostome tooth development, are similarly expressed at Polyodon tooth loci, thus extending this conserved developmental pattern within the Actinopterygii. These genes map spatio-temporal tooth initiation in Polyodon larvae and provide new data in both oral and pharyngeal tooth sites. Variation in cellular intensity of shh maps timing of tooth morphogenesis, revealing a second odontogenic wave as alternate sites within tooth rows, a dental pattern also present in more derived actinopterygians. Developmental timing for each tooth field in Polyodon follows a gradient, from rostral to caudal and ventral to dorsal, repeated during subsequent loss of teeth. The transitory Polyodon dentition is modified by cessation of tooth addition and loss. As such, Polyodon represents a basal actinopterygian model for the evolution of developmental novelty: initial conservation, followed by tooth loss, accommodating the adult trophic modification to filter-feeding.


Assuntos
Sequência Conservada/genética , Dentição , Proteínas de Peixes/genética , Peixes/crescimento & desenvolvimento , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Odontogênese , Animais , Evolução Biológica , Proteínas de Peixes/metabolismo , Peixes/anatomia & histologia , Dados de Sequência Molecular , Análise de Sequência de DNA
3.
PLoS Biol ; 9(10): e1001168, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21990962

RESUMO

Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Evolução Biológica , Peixes/crescimento & desenvolvimento , Desenvolvimento Muscular , Pelve/crescimento & desenvolvimento , Nadadeiras de Animais/anatomia & histologia , Animais , Animais Geneticamente Modificados , Peixes/genética , Pelve/anatomia & histologia , Filogenia , Somitos/transplante , Especificidade da Espécie
4.
J Anat ; 222(1): 67-78, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22697305

RESUMO

Muscles of the vertebrate neck include the cucullaris and hypobranchials. Although a functional neck first evolved in the lobe-finned fishes (Sarcopterygii) with the separation of the pectoral/shoulder girdle from the skull, the neck muscles themselves have a much earlier origin among the vertebrates. For example, lampreys possess hypobranchial muscles, and may also possess the cucullaris. Recent research in chick has established that these two muscles groups have different origins, the hypobranchial muscles having a somitic origin but the cucullaris muscle deriving from anterior lateral plate mesoderm associated with somites 1-3. Additionally, the cucullaris utilizes genetic pathways more similar to the head than the trunk musculature. Although the latter results are from experiments in the chick, cucullaris homologues occur in a variety of more basal vertebrates such as the sharks and zebrafish. Data are urgently needed from these taxa to determine whether the cucullaris in these groups also derives from lateral plate mesoderm or from the anterior somites, and whether the former or the latter represent the basal vertebrate condition. Other lateral plate mesoderm derivatives include the appendicular skeleton (fins, limbs and supporting girdles). If the cucullaris is a definitive lateral plate-derived structure it may have evolved in conjunction with the shoulder/limb skeleton in vertebrates and thereby provided a greater degree of flexibility to the heads of predatory vertebrates.


Assuntos
Evolução Biológica , Músculos do Pescoço/anatomia & histologia , Vertebrados/anatomia & histologia , Animais , Regulação da Expressão Gênica , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Músculos do Pescoço/embriologia , Vertebrados/embriologia
5.
J Exp Zool B Mol Dev Evol ; 316(7): 515-25, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21815265

RESUMO

Bilaterian Hox genes play pivotal roles in the specification of positional identities along the anteroposterior axis. Particularly in vertebrates, their regulation is tightly coordinated by tandem arrays of genes [paralogy groups (PGs)] in four gene clusters (HoxA-D). Traditionally, the uninterrupted Hox cluster (Hox1-14) of the invertebrate chordate amphioxus was regarded as an archetype of the vertebrate Hox clusters. In contrast to Hox1-13 that are globally regulated by the "Hox code" and are often phylogenetically conserved, vertebrate Hox14 members were only recently revealed to be present in an African lungfish, a coelacanth, chondrichthyans and a lamprey, and decoupled from the Hox code. In this study we performed a PCR-based search of Hox14 members from diverse vertebrates, and identified one in the Australian lungfish, Neoceratodus forsteri. Based on a molecular phylogenetic analysis, this gene was designated NfHoxA14. Our real-time RT-PCR suggested its hindgut-associated expression, previously observed also in cloudy catshark HoxD14 and lamprey Hox14α. It is likely that this altered expression scheme was established before the Hox cluster quadruplication, probably at the base of extant vertebrates. To investigate the origin of vertebrate Hox14, by including this sarcopterygian Hox14 member, we performed focused phylogenetic analyses on its relationship with other vertebrate posterior Hox PGs (Hox9-13) as well as amphioxus posterior Hox genes. Our results confirmed the hypotheses previously proposed by other studies that vertebrate Hox14 does not have any amphioxus ortholog, and that none of 1-to-1 pairs of vertebrate and amphioxus posterior Hox genes, based on their relative location in the clusters, is orthologous.


Assuntos
Evolução Molecular , Genes Homeobox/genética , Família Multigênica/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Austrália , Cordados não Vertebrados/genética , Humanos , Lampreias/genética , Dados de Sequência Molecular , Filogenia
6.
Sci Adv ; 6(34): eabc3510, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32875118

RESUMO

How the hand and digits originated from fish fins during the Devonian fin-to-limb transition remains unsolved. Controversy in this conundrum stems from the scarcity of ontogenetic data from extant lobe-finned fishes. We report the patterning of an autopod-like domain by hoxa13 during fin development of the Australian lungfish, the most closely related extant fish relative of tetrapods. Differences from tetrapod limbs include the absence of digit-specific expansion of hoxd13 and hand2 and distal limitation of alx4 and pax9, which potentially evolved through an enhanced response to shh signaling in limbs. These developmental patterns indicate that the digit program originated in postaxial fin radials and later expanded anteriorly inside of a preexisting autopod-like domain during the evolution of limbs. Our findings provide a genetic framework for the transition of fins into limbs that supports the significance of classical models proposing a bending of the tetrapod metapterygial axis.

7.
J Exp Zool B Mol Dev Evol ; 310(4): 345-54, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17563085

RESUMO

The cranial neural crest has been shown to give rise to a diversity of cells and tissues, including cartilage, bone and connective tissue, in a variety of tetrapods and in the zebrafish. It has been claimed, however, that in the Australian lungfish these tissues are not derived from the cranial neural crest, and even that no migrating cranial neural crest cells exist in this species. We have earlier documented that cranial neural crest cells do migrate, although they emerge late, in the Australian lungfish. Here, we have used the lipophilic fluorescent dye, DiI, to label premigratory cranial neural crest cells and follow their fate until stage 43, when several cranial skeletal elements have started to differentiate. The timing and extent of their migration was investigated, and formation of mandibular, hyoid and branchial streams documented. Cranial neural crest was shown to contribute cells to several parts of the head skeleton, including the trabecula cranii and derivatives of the mandibular arch (e.g., Meckel's cartilage, quadrate), the hyoid arch (e.g., the ceratohyal) and the branchial arches (ceratobranchials I-IV), as well as to the connective tissue surrounding the myofibers in cranial muscles. We conclude that cranial neural crest migration and fate in the Australian lungfish follow the stereotyped pattern documented in other vertebrates.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Peixes/embriologia , Cabeça/embriologia , Modelos Biológicos , Crista Neural/embriologia , Animais , Carbocianinas , Movimento Celular/fisiologia , Embrião não Mamífero/embriologia , Imuno-Histoquímica , Especificidade da Espécie
8.
J Morphol ; 279(4): 494-516, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29214665

RESUMO

Lungfishes are the extant sister group of tetrapods. As such, they are important for the study of evolutionary processes involved in the water to land transition of vertebrates. The evolution of a true neck, that is, the complete separation of the pectoral girdle from the cranium, is one of the most intriguing morphological transitions known among vertebrates. Other salient changes involve new adaptations for terrestrial feeding, which involves both the cranium and its associated musculature. Historically, the cranium has been extensively investigated, but the development of the cranial muscles much less so. Here, we present a detailed study of cephalic muscle development in the Australian lungfish, Neoceratodus forsteri, which is considered to be the sister taxon to all other extant lungfishes. Neoceratodus shows several developmental patterns previously described in other taxa; the tendency of muscles to develop from anterior to posterior, from their region of origin toward insertion, and from lateral to ventral/medial (outside-in), at least in the branchial arches. The m.protractor pectoralis appears to develop as an extension of the most posterior m.levatores arcuum branchialium, supporting the hypothesis that the m.cucullaris and its derivatives (protractor pectoralis, levatores arcuum branchialium) are branchial muscles. We present a new hypothesis regarding the homology of the ventral branchial arch muscles (subarcualis recti and obliqui, transversi ventrales) in lungfishes and amphibians. Moreover, the morphology and development of the cephalic muscles confirms that extant lungfishes are neotenic and have been strongly influenced via paedomorphosis during their evolutionary history.


Assuntos
Peixes/anatomia & histologia , Peixes/crescimento & desenvolvimento , Desenvolvimento Muscular , Músculos/anatomia & histologia , Animais , Austrália , Músculos/diagnóstico por imagem , Pescoço/anatomia & histologia , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem
9.
Theory Biosci ; 124(2): 145-63, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17046353

RESUMO

Vertebrate head development is a classical topic lately invigorated by methodological as well as conceptual advances. In contrast to the classical segmentalist views going back to idealistic morphology, the head is now seen not as simply an extension of the trunk, but as a structure patterned by different mechanisms and tissues. Whereas the trunk paraxial mesoderm imposes its segmental pattern on adjacent tissues such as the neural crest derivatives, in the head the neural crest cells carry pattern information needed for proper morphogenesis of mesodermal derivatives, such as the cranial muscles. Neural crest cells make connective tissue components which attach the muscle fiber to the skeletal elements. These crest cells take their origin from the same visceral arch as the muscle cells, even when the skeletal elements to which the muscle attaches are from another arch. The neural crest itself receives important patterning influences from the pharyngeal endoderm. The origin of jaws can be seen as an exaptation in which a heterotopic shift of the expression domains of regulatory genes was a necessary step that enabled this key innovation. The jaws are patterned by Dlx genes expressed in a nested pattern along the proximo-distal axis, analogous to the anterior-posterior specification governed by Hox genes. Knocking out Dlx 5 and 6 transforms the lower jaw homeotically into an upper jaw. New data indicate that both upper and lower jaw cartilages are derived from one, common anlage traditionally labelled the "mandibular" condensation, and that the "maxillary" condensation gives rise to other structures such as the trabecula. We propose that the main contribution from evolutionary developmental biology to solving homology questions lies in deepening our biological understanding of characters and character states.


Assuntos
Evolução Biológica , Cabeça/anatomia & histologia , Cabeça/embriologia , Vertebrados/embriologia , Animais , Proteínas de Homeodomínio/genética , Humanos , Músculos/embriologia , Crista Neural/embriologia , Crânio/anatomia & histologia , Crânio/embriologia , Fatores de Transcrição/genética , Zoologia
10.
J Morphol ; 261(2): 131-40, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15216519

RESUMO

Vertebrate head development is a classical topic that has received renewed attention during the last decade. Most reports use one of a few model organisms (chicken, mouse, zebrafish) and have focused on molecular mechanisms and the role of the neural crest, while cranial muscle development has received less attention. Here we describe cranial muscle differentiation and morphogenesis in the Mexican axolotl, Ambystoma mexicanum. To determine the onset of differentiation we use antibodies against desmin and optical sectioning using confocal laser scanning microscopy on whole-mount immunostained embryos. This technique makes it possible to document the cranial muscle in three dimensions while keeping the specimens intact. Desmin expression starts almost simultaneously in the first, second, and third visceral arch muscles (as in other amphibians studied). Muscle anlagen divide up early into the different elements which constitute the larval cranial musculature. We extend and refine earlier findings, e.g., by documenting a clear division between interhyoideus and interhyoideus posterior. The timing of cranial muscle differentiation differs among vertebrate groups, but seems to be constant within each group. This study provides a morphological foundation for further studies of muscle cell fate and early differentiation.


Assuntos
Ambystoma mexicanum/embriologia , Região Branquial/embriologia , Desmina/biossíntese , Larva/fisiologia , Músculo Esquelético/embriologia , Crânio/embriologia , Ambystoma mexicanum/anatomia & histologia , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Larva/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Crânio/anatomia & histologia
11.
Science ; 325(5937): 193-6, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19590000

RESUMO

The turtle shell offers a fascinating case study of vertebrate evolution, based on the modification of a common body plan. The carapace is formed from ribs, which encapsulate the scapula; this stands in contrast to the typical amniote body plan and serves as a key to understanding turtle evolution. Comparative analyses of musculoskeletal development between the Chinese soft-shelled turtle and other amniotes revealed that initial turtle development conforms to the amniote pattern; however, during embryogenesis, lateral rib growth results in a shift of elements. In addition, some limb muscles establish new turtle-specific attachments associated with carapace formation. We propose that the evolutionary origin of the turtle body plan results from heterotopy based on folding and novel connectivities.


Assuntos
Evolução Biológica , Músculo Esquelético/embriologia , Costelas/embriologia , Escápula/embriologia , Tartarugas/anatomia & histologia , Tartarugas/embriologia , Animais , Padronização Corporal , Embrião de Galinha , Embrião não Mamífero/anatomia & histologia , Desenvolvimento Embrionário , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/anatomia & histologia , Desenvolvimento Musculoesquelético , Costelas/anatomia & histologia , Escápula/anatomia & histologia
12.
J Exp Zool B Mol Dev Evol ; 308(6): 757-68, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17849442

RESUMO

A defining feature of tetrapod evolutionary origins is the transition from fish fins to tetrapod limbs. A major change during this transition is the appearance of the autopod (hands, feet), which comprises two distinct regions, the wrist/ankle and the digits. When the autopod first appeared in Late Devonian fossil tetrapods, it was incomplete: digits evolved before the full complement of wrist/ankle bones. Early tetrapod wrists/ankles, including those with a full complement of bones, also show a sharp pattern discontinuity between proximal elements and distal elements. This suggests the presence of a discontinuity in the proximal-distal sequence of development. Such a discontinuity occurs in living urodeles, where digits form before completion of the wrist/ankle, implying developmental independence of the digits from wrist/ankle elements. We have observed comparable independent development of pectoral fin radials in the lungfish Neoceratodus (Osteichthyes: Sarcopterygii), relative to homologues of the tetrapod limb and proximal wrist elements in the main fin axis. Moreover, in the Neoceratodus fin, expression of Hoxd13 closely matches late expression patterns observed in the tetrapod autopod. This evidence suggests that Neoceratodus fin radials and tetrapod digits may be patterned by shared mechanisms distinct from those patterning the proximal fin/limb elements, and in that sense are homologous. The presence of independently developing radials in the distal part of the pectoral (and pelvic) fin may be a general feature of the Sarcopterygii.


Assuntos
Peixes/anatomia & histologia , Peixes/crescimento & desenvolvimento , Animais , Peixes/genética , Membro Anterior/anatomia & histologia , Membro Anterior/crescimento & desenvolvimento , Fósseis , Regulação da Expressão Gênica , Filogenia
13.
Dev Dyn ; 231(2): 237-47, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15366001

RESUMO

The role of cranial neural crest cells in the formation of visceral arch musculature was investigated in the Mexican axolotl, Ambystoma mexicanum. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine, perchlorate) labeling and green fluorescent protein (GFP) mRNA injections combined with unilateral transplantations of neural folds showed that neural crest cells contribute to the connective tissues but not the myofibers of developing visceral arch muscles in the mandibular, hyoid, and branchial arches. Extirpations of individual cranial neural crest streams demonstrated that neural crest cells are necessary for correct morphogenesis of visceral arch muscles. These do, however, initially develop in their proper positions also in the absence of cranial neural crest. Visceral arch muscles forming in the absence of neural crest cells start to differentiate at their origins but fail to extend toward their insertions and may have a frayed appearance. Our data indicate that visceral arch muscle positioning is controlled by factors that do not have a neural crest origin. We suggest that the cranial neural crest-derived connective tissues provide directional guidance important for the proper extension of the cranial muscles and the subsequent attachment to the insertion on the correct cartilage. In a comparative context, our data from the Mexican axolotl support the view that the cranial neural crest plays a fundamental role in the development of not only the skeleton of the vertebrate head but also in the morphogenesis of the cranial muscles and that this might be a primitive feature of cranial development in vertebrates.


Assuntos
Ambystoma mexicanum , Cabeça , Morfogênese , Músculos/embriologia , Crista Neural , Ambystoma mexicanum/anatomia & histologia , Ambystoma mexicanum/embriologia , Animais , Padronização Corporal , Linhagem da Célula , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cabeça/anatomia & histologia , Cabeça/embriologia , Imuno-Histoquímica , Músculos/anatomia & histologia , Crista Neural/citologia , Crista Neural/fisiologia
14.
Dev Biol ; 276(1): 225-36, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15531376

RESUMO

Cartilage of the vertebrate jaw is derived from cranial neural crest cells that migrate to the first pharyngeal arch and form a dorsal "maxillary" and a ventral "mandibular" condensation. It has been assumed that the former gives rise to palatoquadrate and the latter to Meckel's (mandibular) cartilage. In anamniotes, these condensations were thought to form the framework for the bones of the adult jaw and, in amniotes, appear to prefigure the maxillary and mandibular facial prominences. Here, we directly test the contributions of these neural crest condensations in axolotl and chick embryos, as representatives of anamniote and amniote vertebrate groups, using molecular and morphological markers in combination with vital dye labeling of late-migrating cranial neural crest cells. Surprisingly, we find that both palatoquadrate and Meckel's cartilage derive solely from the ventral "mandibular" condensation. In contrast, the dorsal "maxillary" condensation contributes to trabecular cartilage of the neurocranium and forms part of the frontonasal process but does not contribute to jaw joints as previously assumed. These studies reveal the morphogenetic processes by which cranial neural crest cells within the first arch build the primordia for jaw cartilages and anterior cranium.


Assuntos
Ambystoma/embriologia , Evolução Biológica , Mandíbula/embriologia , Maxila/embriologia , Animais , Padronização Corporal , Cartilagem/embriologia , Cartilagem/ultraestrutura , Embrião de Galinha , Corantes , Embrião não Mamífero , Fluoresceína-5-Isotiocianato , Proteínas de Fluorescência Verde , Hibridização In Situ , Mandíbula/crescimento & desenvolvimento , Maxila/crescimento & desenvolvimento , Modelos Biológicos , Morfogênese , Crista Neural/citologia , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA