Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Am J Pathol ; 194(5): 641-655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309427

RESUMO

Alport syndrome is an inherited kidney disease, which can lead to glomerulosclerosis and fibrosis, as well as end-stage kidney disease in children and adults. Platelet-derived growth factor-D (PDGF-D) mediates glomerulosclerosis and interstitial fibrosis in various models of kidney disease, prompting investigation of its role in a murine model of Alport syndrome. In vitro, PDGF-D induced proliferation and profibrotic activation of conditionally immortalized human parietal epithelial cells. In Col4a3-/- mice, a model of Alport syndrome, PDGF-D mRNA and protein were significantly up-regulated compared with non-diseased wild-type mice. To analyze the therapeutic potential of PDGF-D inhibition, Col4a3-/- mice were treated with a PDGF-D neutralizing antibody. Surprisingly, PDGF-D antibody treatment had no effect on renal function, glomerulosclerosis, fibrosis, or other indices of kidney injury compared with control treatment with unspecific IgG. To characterize the role of PDGF-D in disease development, Col4a3-/- mice with a constitutive genetic deletion of Pdgfd were generated and analyzed. No difference in pathologic features or kidney function was observed in Col4a3-/-Pdgfd-/- mice compared with Col4a3-/-Pdgfd+/+ littermates, confirming the antibody treatment data. Mechanistically, lack of proteolytic PDGF-D activation in Col4a3-/- mice might explain the lack of effects in vivo. In conclusion, despite its established role in kidney fibrosis, PDGF-D, without further activation, does not mediate the development and progression of Alport syndrome in mice.


Assuntos
Nefrite Hereditária , Animais , Camundongos , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Fibrose , Rim/patologia , Camundongos Knockout , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Derivado de Plaquetas/uso terapêutico
2.
Blood ; 140(4): 388-400, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35576527

RESUMO

The current standard of care for moderate to severe ischemic stroke is thrombolytic therapy with tissue plasminogen activator (tPA). Treatment with tPA can significantly improve neurologic outcomes; however, thrombolytic therapy is associated with an increased risk of intracerebral hemorrhage (ICH). The risk of hemorrhage significantly limits the use of thrombolytic therapy, and identifying pathways induced by tPA that increase this risk could provide new therapeutic options to extend thrombolytic therapy to a wider patient population. Here, we investigate the role of protein kinase Cß (PKCß) phosphorylation of the tight junction protein occludin during ischemic stroke and its role in cerebrovascular permeability. We show that activation of this pathway by tPA is associated with an increased risk of ICH. Middle cerebral artery occlusion (MCAO) increased phosphorylation of occludin serine 490 (S490) in the ischemic penumbra in a tPA-dependent manner, as tPA-/- mice were significantly protected from MCAO-induced occludin phosphorylation. Intraventricular injection of tPA in the absence of ischemia was sufficient to induce occludin phosphorylation and vascular permeability in a PKCß-dependent manner. Blocking occludin phosphorylation, either by targeted expression of a non-phosphorylatable form of occludin (S490A) or by pharmacologic inhibition of PKCß, reduced MCAO-induced permeability and improved functional outcome. Furthermore, inhibiting PKCß after MCAO prevented ICH associated with delayed thrombolysis. These results show that PKCß phosphorylation of occludin is a downstream mediator of tPA-induced cerebrovascular permeability and suggest that PKCß inhibitors could improve stroke outcome and prevent ICH associated with delayed thrombolysis, potentially extending the window for thrombolytic therapy in stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/etiologia , Fibrinolíticos/uso terapêutico , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Camundongos , Ocludina/genética , Ocludina/metabolismo , Fosforilação , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/etiologia , Terapia Trombolítica/efeitos adversos , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tecidual/metabolismo
3.
J Hepatol ; 78(5): 901-913, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36717026

RESUMO

BACKGROUND & AIMS: Hepatic steatosis is a hallmark of non-alcoholic fatty liver disease (NAFLD), a common comorbidity in type 2 diabetes mellitus (T2DM). The pathogenesis of NAFLD is complex and involves the crosstalk between the liver and the white adipose tissue (WAT). Vascular endothelial growth factor B (VEGF-B) has been shown to control tissue lipid accumulation by regulating the transport properties of the vasculature. The role of VEGF-B signaling and the contribution to hepatic steatosis and NAFLD in T2DM is currently not understood. METHODS: C57BL/6 J mice treated with a neutralizing antibody against VEGF-B, or mice with adipocyte-specific overexpression or under-expression of VEGF-B (AdipoqCre+/VEGF-BTG/+ mice and AdipoqCre+/Vegfbfl/+mice) were subjected to a 6-month high-fat diet (HFD), or chow-diet, whereafter NAFLD development was assessed. VEGF-B expression was analysed in WAT biopsies from patients with obesity and NAFLD in a pre-existing clinical cohort (n = 24 patients with NAFLD and n = 24 without NAFLD) and correlated to clinicopathological features. RESULTS: Pharmacological inhibition of VEGF-B signaling in diabetic mice reduced hepatic steatosis and NAFLD by blocking WAT lipolysis. Mechanistically we show, by using HFD-fed AdipoqCre+/VEGF-BTG/+ mice and HFD-fed AdipoqCre+/Vegfbfl/+mice, that inhibition of VEGF-B signaling targets lipolysis in adipocytes. Reducing VEGF-B signaling ameliorated NAFLD by decreasing WAT inflammation, resolving WAT insulin resistance, and lowering the activity of the hormone sensitive lipase. Analyses of human WAT biopsies from individuals with NAFLD provided evidence supporting the contribution of VEGF-B signaling to NAFLD development. VEGF-B expression levels in adipocytes from two WAT depots correlated with development of dysfunctional WAT and NAFLD in humans. CONCLUSIONS: Taken together, our data from mouse models and humans suggest that VEGF-B antagonism may represent an approach to combat NAFLD by targeting hepatic steatosis through suppression of lipolysis. IMPACT AND IMPLICATIONS: Non-alcoholic fatty liver disease (NAFLD) is a common comorbidity in type 2 diabetes mellitus (T2DM) and has a global prevalence of between 25-29%. There are currently no approved drugs for NAFLD, and given the scale of the ongoing diabetes epidemics, there is an urgent need to identify new treatment options. Our work suggests that VEGF-B antagonism may represent an approach to combat NAFLD by targeting hepatic steatosis through suppression of lipolysis. The neutralizing anti-VEGF-B antibody, which was used in this study, has already entered clinical trials for patients with diabetes. Therefore, we believe that our results are of great general interest to a broad audience, including patients and patient organizations, the medical community, academia, the life science industry and the public.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipólise , Fator B de Crescimento do Endotélio Vascular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Fígado/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo/metabolismo
4.
EMBO Rep ; 21(7): e49343, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32449307

RESUMO

Regulation of endothelial nutrient transport is poorly understood. Vascular endothelial growth factor B (VEGF-B) signaling in endothelial cells promotes uptake and transcytosis of fatty acids from the bloodstream to the underlying tissue, advancing pathological lipid accumulation and lipotoxicity in diabetic complications. Here, we demonstrate that VEGF-B limits endothelial glucose transport independent of fatty acid uptake. Specifically, VEGF-B signaling impairs recycling of low-density lipoprotein receptor (LDLR) to the plasma membrane, leading to reduced cholesterol uptake and membrane cholesterol loading. Reduced cholesterol levels in the membrane leads to a decrease in glucose transporter 1 (GLUT1)-dependent endothelial glucose uptake. Inhibiting VEGF-B in vivo reconstitutes membrane cholesterol levels and restores glucose uptake, which is of particular relevance for conditions involving insulin resistance and diabetic complications. In summary, our study reveals a mechanism whereby VEGF-B regulates endothelial nutrient uptake and highlights the impact of membrane cholesterol for regulation of endothelial glucose transport.


Assuntos
Glucose , Fator B de Crescimento do Endotélio Vascular , Colesterol , Células Endoteliais/metabolismo , Transcitose , Fator B de Crescimento do Endotélio Vascular/metabolismo
5.
J Pharmacokinet Pharmacodyn ; 48(4): 525-541, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33728547

RESUMO

Verinurad, a uric acid transporter 1 (URAT1) inhibitor, lowers serum uric acid by promoting its urinary excretion. Co-administration with a xanthine oxidase inhibitor (XOI) to simultaneously reduce uric acid production rate reduces the potential for renal tubular precipitation of uric acid, which can lead to acute kidney injury. The combination is currently in development for chronic kidney disease and heart failure. The aim of this work was to apply and extend a previously developed semi-mechanistic exposure-response model for uric acid kinetics to include between-subject variability to verinurad and its combinations with XOIs, and to provide predictions to support future treatment strategies. The model was developed using data from 12 clinical studies from a total of 434 individuals, including healthy volunteers, patients with hyperuricemia, and renally impaired subjects. The model described the data well, taking into account the impact of various patient characteristics such as renal function, baseline fractional excretion of uric acid, and race. The potencies (EC50s) of verinurad (reducing uric acid reuptake), febuxostat (reducing uric acid production), and oxypurinol (reducing uric acid production) were: 29, 128, and 13,030 ng/mL, respectively. For verinurad, symptomatic hyperuricemic (gout) subjects showed a higher EC50 compared with healthy volunteers (37 ng/mL versus 29 ng/mL); while no significant difference was found for asymptomatic hyperuricemic patients. Simulations based on the uric acid model were performed to assess dose-response of verinurad in combination with XOI, and to investigate the impact of covariates. The simulations demonstrated application of the model to support dose selection for verinurad.


Assuntos
Hiperuricemia/tratamento farmacológico , Naftalenos/uso terapêutico , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Propionatos/uso terapêutico , Piridinas/uso terapêutico , Ácido Úrico/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimioterapia Combinada , Feminino , Humanos , Hiperuricemia/sangue , Hiperuricemia/urina , Rim/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Naftalenos/administração & dosagem , Naftalenos/farmacologia , Propionatos/administração & dosagem , Propionatos/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Ácido Úrico/urina , Xantina Oxidase/antagonistas & inibidores , Adulto Jovem
6.
Respir Res ; 21(1): 158, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571311

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) clinical trials aimed at evaluating treatment effects on exacerbations often suffer from early discontinuations of randomized treatment. Treatment discontinuations imply a loss of information and should ideally be considered in the statistical analysis of trial results, particularly if the discontinuations are related to the disease or treatment itself. Here, we explore this issue by investigating (1) whether there exists an association between the risks of exacerbation and treatment discontinuation in COPD clinical trials and (2) whether disregarding this association can cause bias in exacerbation treatment effect estimates. We focus on the hypothetical estimand, i.e. the treatment effect that would have been observed had all subjects completed the trial as planned. METHODS: The association between exacerbation and discontinuation risks was analysed by applying a joint frailty (random effect) model - allowing for the simultaneous analysis of multiple types of correlated events - to data from five Phase III-IV COPD clinical trials. Specifically, the impact of the association on exacerbation treatment effect estimates was assessed by comparing the treatment hazard ratios of the joint frailty model to the rate/hazard ratios of two related statistical models (the negative binomial and shared frailty models), which both assume discontinuations to be unrelated to the trial outcome. The models were also compared using simulated data. RESULTS: A statistically significant (p < 0.0001), positive association between exacerbation and discontinuation risks was found in all trials. Importantly, simulations confirmed that - with such an association - models disregarding the association risk producing biased results (> 5 percentage point difference in hazard/rate ratio). For some treatment comparisons in the clinical trials, the difference in treatment effect estimates between the joint frailty and the other models was as high as 10-15 percentage points. The difference was affected by the strength of the exacerbation-discontinuation association, the population heterogeneity in exacerbation risk, and the difference in discontinuation rates between treatment arms. CONCLUSIONS: We have identified an association between the risks of exacerbation and treatment discontinuation in five COPD clinical trials. We recommend using the joint frailty model to account for this association when estimating exacerbation treatment effects, particularly when targeting the hypothetical estimand.


Assuntos
Progressão da Doença , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto/normas , Suspensão de Tratamento/tendências , Ensaios Clínicos Fase III como Assunto/normas , Ensaios Clínicos Fase IV como Assunto/normas , Bases de Dados Factuais/estatística & dados numéricos , Fragilidade/diagnóstico , Fragilidade/tratamento farmacológico , Fragilidade/epidemiologia , Humanos , Estudos Multicêntricos como Assunto/normas , Inibidores da Fosfodiesterase 4/administração & dosagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Fatores de Risco , Fatores de Tempo
7.
Kidney Int ; 95(5): 1103-1119, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30827511

RESUMO

Platelet-derived growth factors (PDGF) have been implicated in kidney disease progression. We previously found that PDGF-C is upregulated at sites of renal fibrosis and that antagonism of PDGF-C reduces fibrosis in the unilateral ureteral obstruction model. We studied the role of PDGF-C in collagen 4A3-/- ("Alport") mice, a model of progressive renal fibrosis with greater relevance to human kidney disease. Alport mice were crossbred with PDGF-C-/- mice or administered a neutralizing PDGF-C antibody. Both PDGF-C deficiency and neutralization reduced serum creatinine and blood urea nitrogen levels and mitigated glomerular injury, renal fibrosis, and renal inflammation. Unexpectedly, systolic blood pressure was also reduced in both Alport and wild-type mice treated with a neutralizing PDGF-C antibody. Neutralization of PDGF-C reduced arterial wall thickness in the renal cortex of Alport mice. Aortic rings isolated from anti-PDGF-C-treated wildtype mice exhibited reduced tension and faster relaxation than those of untreated mice. In vitro, PDGF-C upregulated angiotensinogen in aortic tissue and in primary hepatocytes and induced nuclear factor κB (NFκB)/p65-binding to the angiotensinogen promoter in hepatocytes. Neutralization of PDGF-C suppressed transcript expression of angiotensinogen in Alport mice and angiotensin II receptor type 1 in Alport and wildtype mice. Finally, administration of neutralizing PDGF-C antibodies ameliorated angiotensin II-induced hypertension in healthy mice. Thus, in addition to its key role in mediating renal fibrosis, we identified PDGF-C as a mediator of hypertension via effects on renal vasculature and on the renin-angiotensin system. The contribution to both renal fibrosis and hypertension render PDGF-C an attractive target in progressive kidney disease.


Assuntos
Hipertensão/patologia , Rim/patologia , Linfocinas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Angiotensinogênio/metabolismo , Animais , Pressão Sanguínea/genética , Células Cultivadas , Colágeno Tipo IV/genética , Modelos Animais de Doenças , Fibrose , Hepatócitos , Humanos , Hipertensão/etiologia , Hipertensão/genética , Linfocinas/antagonistas & inibidores , Masculino , Camundongos , Camundongos Knockout , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Cultura Primária de Células , Regulação para Cima , Ureter/cirurgia
8.
J Cell Sci ; 130(8): 1365-1378, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28254885

RESUMO

Platelet-derived growth factor (PDGF)-D is a PDGF receptor ß (PDGFRß)-specific ligand implicated in a number of pathological conditions, such as cardiovascular disease and cancer, but its biological function remains incompletely understood. In this study, we demonstrate that PDGF-D binds directly to neuropilin 1 (NRP1), in a manner that requires the PDGF-D C-terminal Arg residue. Stimulation with PDGF-D, but not PDGF-B, induced PDGFRß-NRP1 complex formation in fibroblasts. Additionally, PDGF-D induced translocation of NRP1 to cell-cell junctions in endothelial cells, independently of PDGFRß, altering the availability of NRP1 for VEGF-A-VEGFR2 signaling. PDGF-D showed differential effects on pericyte behavior in ex vivo sprouting assays compared to PDGF-B. Furthermore, PDGF-D-induced PDGFRß-NRP1 interaction can occur in trans between molecules located in different cells (endothelial cells and pericytes). In summary, we show that NRP1 can act as a co-receptor for PDGF-D-PDGFRß signaling and is possibly implicated in intercellular communication in the vascular wall.


Assuntos
Doenças Cardiovasculares/metabolismo , Endotélio Vascular/metabolismo , Fibroblastos/metabolismo , Junções Intercelulares/metabolismo , Neoplasias/metabolismo , Neuropilina-1/metabolismo , Pericitos/metabolismo , Animais , Linhagem Celular Transformada , Humanos , Linfocinas/metabolismo , Neovascularização Fisiológica , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ligação Proteica , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Suínos
9.
Crit Rev Toxicol ; 49(2): 160-173, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31012388

RESUMO

Computational modeling together with experimental data are essential to assess the risk for particulate matter mediated lung toxicity and to predict the efficacy, safety and fate of aerosolized drug molecules used in inhalation therapy. In silico models are widely used to understand the deposition, distribution, and clearance of inhaled particles and aerosols in the human lung. Exacerbations of chronic obstructive pulmonary disease (COPD) have been reported due to increased particulate matter related air pollution episodes. Considering the profound functional, anatomical and structural changes occurring in COPD lungs, the relevance of the existing in silico models for mimicking diseased lungs warrants reevaluation. Currently available computational modeling tools were developed for the healthy adult (male) lung. Here, we analyze the major alterations occurring in the airway structure, anatomy and pulmonary function in the COPD lung, as compared to the healthy lung. We also scrutinize the various physiological and particle characteristics that influence particle deposition, distribution and clearance in the lung. The aim of this review is to evaluate the availability of the fundamental knowledge and data required for modeling particle deposition in a COPD lung departing from the existing healthy lung models. The extent to which COPD pathophysiology may affect aerosol deposition depends on the relative contribution of several factors such as altered lung structure and function, bronchoconstriction, emphysema, loss of elastic recoil, altered breathing pattern and altered liquid volumes that warrant consideration while developing physiologically relevant in silico models.


Assuntos
Aerossóis , Poluição do Ar/estatística & dados numéricos , Exposição por Inalação/estatística & dados numéricos , Modelos Estatísticos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Adulto , Simulação por Computador , Humanos , Pulmão
10.
Proc Natl Acad Sci U S A ; 113(7): E864-73, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831065

RESUMO

Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRß) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRß, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRß. The presence of a subclonal population of tumor cells characterized by PDGFRß expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRß axis.


Assuntos
Linfocinas/genética , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia , Fator de Crescimento Derivado de Plaquetas/genética , Animais , Proliferação de Células/genética , Camundongos , Neovascularização Patológica , Tumores Neuroendócrinos/irrigação sanguínea , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/genética
11.
Neuroradiology ; 60(7): 759-768, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29761220

RESUMO

PURPOSE: In mechanical thrombectomy (MT) for ischemic stroke, endothelial cells (ECs) from intracranial blood vessels adhere to the stent retriever device and can be harvested. However, understanding the molecular biology and the role of the endothelium in different pathological conditions remains insufficient. The purpose of the study was to characterize and analyze the molecular aspect of harvested ECs using cell culture and transcriptomic techniques in an MT swine model relevant to clinical ischemic stroke. METHODS: In swine, preformed thrombi were injected into the external carotid and subclavian arteries to occlude their branches. MT was performed according to clinical routine. The stent retriever device and thrombus were treated with cell dissociation buffer. The resulting cell suspension was analyzed by immunohistochemistry and was cultured. Cultured cells were analyzed using single-cell RNA sequencing (scRNA-seq) after fluorescence-activated cell sorting (FACS). RESULTS: A total number of 37 samples were obtained containing CD31-positive cells. Cell culture was successful in 90% of samples, and the cells expressed multiple typical EC protein markers. Eighty-nine percent of the sorted cells yielded high-quality transcriptomes, and single-cell transcriptomes from cultured cells showed that they expressed typical endothelial gene patterns. Gene expression analysis of ECs from an occluded artery did not show distinctive clustering into subtypes. CONCLUSION: ECs harvested during MT can be cultured and analyzed using single-cell transcriptomic techniques. This analysis can be implemented in clinical practice to study the EC gene expression of comorbidities, such as hypertension, diabetes mellitus, and metabolic syndrome, in patients suffering from acute ischemic stroke.


Assuntos
Células Endoteliais/patologia , Perfilação da Expressão Gênica/métodos , RNA/genética , Acidente Vascular Cerebral/genética , Trombectomia/métodos , Animais , Células Cultivadas , Angiografia Cerebral , Citometria de Fluxo , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Análise de Componente Principal , Acidente Vascular Cerebral/patologia , Suínos
12.
Nature ; 490(7420): 426-30, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23023133

RESUMO

The prevalence of type 2 diabetes is rapidly increasing, with severe socioeconomic impacts. Excess lipid deposition in peripheral tissues impairs insulin sensitivity and glucose uptake, and has been proposed to contribute to the pathology of type 2 diabetes. However, few treatment options exist that directly target ectopic lipid accumulation. Recently it was found that vascular endothelial growth factor B (VEGF-B) controls endothelial uptake and transport of fatty acids in heart and skeletal muscle. Here we show that decreased VEGF-B signalling in rodent models of type 2 diabetes restores insulin sensitivity and improves glucose tolerance. Genetic deletion of Vegfb in diabetic db/db mice prevented ectopic lipid deposition, increased muscle glucose uptake and maintained normoglycaemia. Pharmacological inhibition of VEGF-B signalling by antibody administration to db/db mice enhanced glucose tolerance, preserved pancreatic islet architecture, improved ß-cell function and ameliorated dyslipidaemia, key elements of type 2 diabetes and the metabolic syndrome. The potential use of VEGF-B neutralization in type 2 diabetes was further elucidated in rats fed a high-fat diet, in which it normalized insulin sensitivity and increased glucose uptake in skeletal muscle and heart. Our results demonstrate that the vascular endothelium can function as an efficient barrier to excess muscle lipid uptake even under conditions of severe obesity and type 2 diabetes, and that this barrier can be maintained by inhibition of VEGF-B signalling. We propose VEGF-B antagonism as a novel pharmacological approach for type 2 diabetes, targeting the lipid-transport properties of the endothelium to improve muscle insulin sensitivity and glucose disposal.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Terapia de Alvo Molecular , Fator B de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator B de Crescimento do Endotélio Vascular/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Endotélio Vascular/metabolismo , Feminino , Glucose/metabolismo , Teste de Tolerância a Glucose , Ilhotas Pancreáticas/anatomia & histologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/patologia , Metabolismo dos Lipídeos , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fator B de Crescimento do Endotélio Vascular/deficiência , Fator B de Crescimento do Endotélio Vascular/genética
13.
BMC Public Health ; 18(1): 880, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012116

RESUMO

BACKGROUND: The global pandemic of physical inactivity represents a considerable public health challenge. Active transportation (i.e., walking or cycling for transport) can contribute to greater total physical activity levels. Mobile phone-based programs can promote behaviour change, but no study has evaluated whether such a program can promote active transportation in adults. This study protocol presents the design and methodology of The Smart City Active Mobile Phone Intervention (SCAMPI), a randomised controlled trial to promote active transportation via a smartphone application (app) with the aim to increase physical activity. METHODS/DESIGN: A two-arm parallel randomised controlled trial will be conducted in Stockholm County, Sweden. Two hundred fifty adults aged 20-65 years will be randomised to either monitoring of active transport via the TRavelVU app (control), or to a 3-month evidence-based behaviour change program to promote active transport and monitoring of active travel via the TRavelVU Plus app (intervention). The primary outcome is moderate-to-vigorous intensity physical activity (MVPA in minutes/day) (ActiGraph wGT3x-BT) measured post intervention. Secondary outcomes include: time spent in active transportation measured via the TRavelVU app, perceptions about active transportation (the Transport and Physical Activity Questionnaire (TPAQ)) and health related quality of life (RAND-36). Assessments are conducted at baseline, after the completed intervention (after 3 months) and 6 months post randomisation. DISCUSSION: SCAMPI will determine the effectiveness of a smartphone app to promote active transportation and physical activity in an adult population. If effective, the app has potential to be a low-cost intervention that can be delivered at scale. TRIAL REGISTRATION: ClinicalTrials.gov NCT03086837 ; 22 March, 2017.


Assuntos
Exercício Físico , Promoção da Saúde/métodos , Aplicativos Móveis , Smartphone , Meios de Transporte , Adulto , Idoso , Ciclismo , Telefone Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Qualidade de Vida , Projetos de Pesquisa , Suécia/epidemiologia , Caminhada , Adulto Jovem
14.
Acta Neuropathol ; 134(4): 585-604, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28725968

RESUMO

Treatment of acute ischemic stroke with the thrombolytic tissue plasminogen activator (tPA) can significantly improve neurological outcomes; however, thrombolytic therapy is associated with an increased risk of intra-cerebral hemorrhage (ICH). Previously, we demonstrated that during stroke tPA acting on the parenchymal side of the neurovascular unit (NVU) can increase blood-brain barrier (BBB) permeability and ICH through activation of latent platelet-derived growth factor-CC (PDGF-CC) and signaling by the PDGF receptor-α (PDGFRα). However, in vitro, activation of PDGF-CC by tPA is very inefficient and the mechanism of PDGF-CC activation in the NVU is not known. Here, we show that the integrin Mac-1, expressed on brain microglia/macrophages (denoted microglia throughout), acts together with the endocytic receptor LRP1 in the NVU to promote tPA-mediated activation of PDGF-CC. Mac-1-deficient mice (Mac-1-/-) are protected from tPA-induced BBB permeability but not from permeability induced by intracerebroventricular injection of active PDGF-CC. Immunofluorescence analysis demonstrates that Mac-1, LRP1, and the PDGFRα all localize to the NVU of arterioles, and following middle cerebral artery occlusion (MCAO) Mac-1-/- mice show significantly less PDGFRα phosphorylation, BBB permeability, and infarct volume compared to wild-type mice. Bone-marrow transplantation studies indicate that resident CD11b+ cells, but not bone-marrow-derived leukocytes, mediate the early activation of PDGF-CC by tPA after MCAO. Finally, using a model of thrombotic stroke with late thrombolysis, we show that wild-type mice have an increased incidence of spontaneous ICH following thrombolysis with tPA 5 h after MCAO, whereas Mac-1-/- mice are resistant to the development of ICH even with late tPA treatment. Together, these results indicate that Mac-1 and LRP1 act as co-factors for the activation of PDGF-CC by tPA in the NVU, and suggest a novel mechanism for tightly regulating PDGFRα signaling in the NVU and controlling BBB permeability.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Permeabilidade Capilar/fisiologia , Linfocinas/metabolismo , Microglia/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Arteríolas/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Antígeno CD11b/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Feminino , Fibrinolíticos/efeitos adversos , Fibrinolíticos/farmacologia , Leucócitos/metabolismo , Leucócitos/patologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Receptores de LDL/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Ativador de Plasminogênio Tecidual/efeitos adversos , Ativador de Plasminogênio Tecidual/farmacologia , Proteínas Supressoras de Tumor/metabolismo
15.
Kidney Int ; 89(4): 848-61, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26924050

RESUMO

Platelet-derived growth factor (PDGF)-D, a specific PDGF receptor ß (PDGFR-ß) ligand, mediates mesangial proliferation in vitro and in vivo. However, its role in renal development, physiology, and fibrosis is relatively unknown. In healthy murine kidneys, PDGF-D was found to be expressed on renal mesenchymal cells (mesangial cells, fibroblasts, and vascular smooth muscle cells). During renal fibrosis, PDGF-D and its receptor PDGFR-ß were markedly and similarly upregulated in both human and murine kidneys on activated mesenchymal cells, but PDGF-D was also expressed de novo in injured renal tubular cells. The functional role of PDGF-D was studied in Pdgfd-/- mice, which showed no obvious spontaneous renal phenotype at a young age or during aging. Compared with wild-type littermates, Pdgfd-/- mice had significantly reduced renal interstitial fibrosis in two models of renal scarring: unilateral ureteral obstruction and unilateral ischemia/reperfusion injury. This was associated with reduced phosphorylation of PDGFR-ß and its downstream mediator p38. Systemic adenoviral overexpression of PDGF-D in healthy mice resulted in increased collagen deposition in the kidney interstitium. Thus, PDGF-D is upregulated in murine and human kidney fibrosis, may mediate renal scarring, and is dispensable for normal kidney development and physiological functions. PDGF-D may be a suitable therapeutic target to combat kidney fibrosis.


Assuntos
Linfocinas/metabolismo , Nefroesclerose/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Humanos , Rim/crescimento & desenvolvimento , Masculino , Camundongos Knockout , Estudos Retrospectivos
16.
Am J Pathol ; 185(8): 2132-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26216283

RESUMO

We have identified platelet-derived growth factor (PDGF)-CC as a potent profibrotic mediator in kidney fibrosis and pro-angiogenic mediator in glomeruli. Because renal fibrosis is associated with progressive capillary rarefaction, we asked whether PDGF-CC neutralization in fibrosis might have detrimental anti-angiogenic effects leading to aggravated peritubular capillary loss. We analyzed capillary rarefaction in mice with and without PDGF-CC neutralization (using genetically deficient mice and neutralizing antibodies), in three different models of renal interstitial fibrosis, unilateral ureteral obstruction, unilateral ischemia-reperfusion, Col4a3-deficient (Alport) mice, and healthy animals. Independent of the effect of PDGF-CC neutralization on renal fibrosis, we found no difference in capillary rarefaction between PDGF-CC-neutralized mice and mice with intact PDGF-CC. We also found no differences in microvascular leakage (determined by extravasation of Evans Blue Dye) and in renal relative blood volume quantified using in vivo microcomputed tomography. PDGF-CC neutralization had no effects on renal microvasculature in healthy animals. Capillary endothelium did not express PDGF receptor-α, suggesting that potential PDGF-CC effects would have to be indirect. PDGF-CC neutralization or deficiency was not associated with preservation or accelerated loss of peritubular capillaries, suggesting no significant pro-angiogenic effects of PDGF-CC during renal fibrosis. From a clinical perspective, the profibrotic effects of PDGF-CC outweigh the pro-angiogenic effects and, thus, do not limit a potential therapeutic use of PDGF-CC inhibition in renal fibrosis.


Assuntos
Capilares/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Linfocinas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Capilares/patologia , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Rim/patologia , Nefropatias/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Linfocinas/genética , Camundongos , Camundongos Knockout , Fator de Crescimento Derivado de Plaquetas/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
17.
Cell Tissue Res ; 365(1): 51-63, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26928042

RESUMO

Metabolic diseases, such as obesity and diabetes, are a serious burden for the health system. Vascular endothelial growth factor (VEGF)-B has been shown to regulate tissue uptake and accumulation of fatty acids and is thus involved in these metabolic diseases. However, the cell-type-specific expression pattern of Vegfb and its receptor (VEGFR1, gene Flt1) remains unclear. We explore the expression of Vegfb and Flt1 in the murine heart, lung and kidney by utilizing ß-galactosidase knock-in mouse models and combining the analysis of reporter gene expression and immunofluorescence microscopy. Furthermore, Flt1 heterozygous mice were analyzed with regard to muscular fatty acid accumulation and peripheral insulin sensitivity. Throughout the heart, Vegfb expression was found in cardiomyocytes with a postnatal ventricular shift corresponding to known changes in energy requirements. Vegfb expression was also found in the pulmonary myocardium of the lung and in renal epithelial cells of the thick ascending limb of Henle's loop, the connecting tubule and the collecting duct. In all analyzed organs, VEGFR1 expression was restricted to endothelial cells. We also show that reduced expression of VEGFR1 resulted in decreased cardiac fatty acid accumulation and increased peripheral insulin sensitivity, possibly as a result of attenuated VEGF-B/VEGFR1 signaling. Our data therefore support a tightly controlled, paracrine signaling mechanism of VEGF-B to VEGFR1. The identified cell-specific expression pattern of Vegfb and Flt1 might form the basis for the development of cell-type-targeted research models and contributes to the understanding of the physiological and pathological role of VEGF-B/VEGFR1 signaling.


Assuntos
Coração/fisiologia , Rim/metabolismo , Pulmão/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Epiteliais/metabolismo , Heterozigoto , Rim/citologia , Pulmão/irrigação sanguínea , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fenótipo , Veias Pulmonares/citologia , Veias Pulmonares/metabolismo
18.
Acta Neuropathol ; 131(3): 453-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26687981

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown origins. Neurodegeneration in ALS mouse models occurs together with signs of disrupted blood-spinal cord barrier (BSCB) and regressed capillary network, but the molecular pathways contributing to these vascular pathologies remain unknown. We show that motor neurons of human sporadic ALS patients (n = 12) have increased gene expression of PDGFC and its activator PLAT and presymptomatic activation of the PDGF-CC pathway in SOD1 (G93A) mice leads to BSCB dysfunction. Decrease of Pdgfc expression in SOD1 (G93A) mice restored vascular barrier properties, reduced motor neuron loss and delayed symptom onset by up to 3 weeks. Similarly, lower expression levels of PDGFC or PLAT in motor neurons of sporadic ALS patients were correlated with older age at disease onset. PDGF-CC inhibition and restoration of BSCB integrity did not prevent capillary regression at disease end stage. Lower vessel density was found in spinal cords of sporadic ALS patients and the degree of regression in SOD1 (G93A) mice correlated with more aggressive progression after onset regardless of BSCB status. We conclude that PDGF-CC-induced BSCB dysfunction can contribute to timing of ALS onset, allow insight into disease origins and development of targeted novel therapies.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Barreira Hematoencefálica/patologia , Linfocinas/metabolismo , Degeneração Neural/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Medula Espinal/patologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Western Blotting , Modelos Animais de Doenças , Imunofluorescência , Humanos , Microdissecção e Captura a Laser , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Degeneração Neural/metabolismo , Medula Espinal/metabolismo
19.
Nature ; 464(7290): 917-21, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20228789

RESUMO

The vascular endothelial growth factors (VEGFs) are major angiogenic regulators and are involved in several aspects of endothelial cell physiology. However, the detailed role of VEGF-B in blood vessel function has remained unclear. Here we show that VEGF-B has an unexpected role in endothelial targeting of lipids to peripheral tissues. Dietary lipids present in circulation have to be transported through the vascular endothelium to be metabolized by tissue cells, a mechanism that is poorly understood. Bioinformatic analysis showed that Vegfb was tightly co-expressed with nuclear-encoded mitochondrial genes across a large variety of physiological conditions in mice, pointing to a role for VEGF-B in metabolism. VEGF-B specifically controlled endothelial uptake of fatty acids via transcriptional regulation of vascular fatty acid transport proteins. As a consequence, Vegfb(-/-) mice showed less uptake and accumulation of lipids in muscle, heart and brown adipose tissue, and instead shunted lipids to white adipose tissue. This regulation was mediated by VEGF receptor 1 and neuropilin 1 expressed by the endothelium. The co-expression of VEGF-B and mitochondrial proteins introduces a novel regulatory mechanism, whereby endothelial lipid uptake and mitochondrial lipid use are tightly coordinated. The involvement of VEGF-B in lipid uptake may open up the possibility for novel strategies to modulate pathological lipid accumulation in diabetes, obesity and cardiovascular diseases.


Assuntos
Endotélio/metabolismo , Ácidos Graxos/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Núcleo Celular/genética , Células Cultivadas , Endotélio/citologia , Proteínas de Transporte de Ácido Graxo/genética , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculos/metabolismo , Miocárdio/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Transdução de Sinais , Transcrição Gênica , Fator B de Crescimento do Endotélio Vascular/deficiência , Fator B de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 308(7): L658-71, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25637607

RESUMO

Myofibroblast accumulation, subepithelial fibrosis, and vascular remodeling are complicating features of chronic asthma, but the mechanisms are not clear. Platelet-derived growth factors (PDGFs) regulate the fate and function of various mesenchymal cells and have been implicated as mediators of lung fibrosis. However, it is not known whether PDGF-BB signaling via PDGFRß, which is critical for the recruitment of pericytes to blood vessels, plays a role in airway remodeling in chronic asthma. In the present study, we used a selective PDGFRß inhibitor (CP-673451) to investigate the role of PDGFRß signaling in the development of airway remodeling and lung dysfunction in an established mouse model of house dust mite-induced chronic allergic asthma. Unexpectedly, we found that pharmacological inhibition of PDGFRß signaling in the context of chronic aeroallergen exposure led to exacerbated lung dysfunction and airway smooth muscle thickening. Further studies revealed that the inflammatory response to aeroallergen challenge in mice was associated with decreased PDGF-BB expression and the loss of pericytes from the airway microvasculature. In parallel, cells positive for pericyte markers accumulated in the subepithelial region of chronically inflamed airways. This process was exacerbated in animals treated with CP-673451. The results indicate that perturbed PDGF-BB/PDGFRß signaling and pericyte accumulation in the airway wall may contribute to airway remodeling in chronic allergic asthma.


Assuntos
Remodelação das Vias Aéreas , Asma/patologia , Pericitos/fisiologia , Resistência das Vias Respiratórias , Animais , Asma/fisiopatologia , Becaplermina , Benzimidazóis/farmacologia , Brônquios/imunologia , Brônquios/metabolismo , Brônquios/patologia , Doença Crônica , Modelos Animais de Doenças , Elasticidade , Feminino , Camundongos Endogâmicos C57BL , Músculo Liso/patologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Quinolinas/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA