Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(45): 17622-17630, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30237165

RESUMO

Toxoplasma gondii is a globally prevalent parasitic protist. It is well-known for its ability to infect almost all nucleated vertebrate cells, which is reflected by its unique metabolic architecture. Its fast-growing tachyzoite stage catabolizes glucose via glycolysis to yield l-lactate as a major by-product that must be exported from the cell to prevent toxicity; the underlying mechanism remains to be elucidated, however. Herein, we report three formate-nitrite transporter (FNT)-type monocarboxylate/proton symporters located in the plasma membrane of the T. gondii tachyzoite stage. We observed that all three proteins transport both l-lactate and formate in a pH-dependent manner and are inhibited by 2-hydroxy-chromanones (a class of small synthetic molecules). We also show that these compounds pharmacologically inhibit T. gondii growth. Using a chemical biology approach, we identified the critical residues in the substrate-selectivity region of the parasite transporters that determine differential specificity and sensitivity toward both substrates and inhibitors. Our findings further indicate that substrate specificity in FNT family proteins from T. gondii has evolved such that a functional repurposing of prokaryotic-type transporters helps fulfill a critical metabolic role in a clinically important parasitic protist. In summary, we have identified and characterized the lactate transporters of T. gondii and have shown that compounds blocking the FNTs in this parasite can inhibit its growth, suggesting that these transporters could have utility as potential drug targets.


Assuntos
Antiprotozoários/química , Membrana Celular , Transportadores de Ácidos Monocarboxílicos , Proteínas de Protozoários , Toxoplasma , Sítios de Ligação , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Especificidade por Substrato , Toxoplasma/genética , Toxoplasma/metabolismo
2.
PLoS Pathog ; 13(2): e1006172, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28178358

RESUMO

Resistance against all available antimalarial drugs calls for novel compounds that hit unexploited targets in the parasite. Here, we show that the recently discovered Plasmodium falciparum lactate/proton symporter, PfFNT, is a valid druggable target, and describe a new class of fluoroalkyl vinylogous acids that potently block PfFNT and kill cultured parasites. The original compound, MMV007839, is derived from the malaria box collection of potent antimalarials with unknown targets and contains a unique internal prodrug principle that reversibly switches between a lipophilic transport form and a polar, substrate-analogous active form. Resistance selection of cultured P. falciparum parasites with sub-lethal concentrations of MMV007839 produced a single nucleotide exchange in the PfFNT gene; this, and functional characterization of the resulting PfFNT G107S validated PfFNT as a novel antimalarial target. From quantitative structure function relations we established the compound binding mode and the pharmacophore. The pharmacophore largely circumvents the resistance mutation and provides the basis for a medicinal chemistry program that targets lactate and proton transport as a new mode of antimalarial action.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/metabolismo , Transportadores de Ácidos Monocarboxílicos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/química , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade
3.
Front Chem ; 6: 88, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29637069

RESUMO

Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e., channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease), and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).

4.
FEBS J ; 284(16): 2663-2673, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28544379

RESUMO

Bacterial formate-nitrite transporters (FNT) regulate the metabolic flow of small weak mono-acids derived from anaerobic mixed-acid fermentation, such as formate, and further transport nitrite and hydrosulfide. The eukaryotic Plasmodium falciparumFNT is vital for the malaria parasite by its ability to release the larger l-lactate substrate as the metabolic end product of anaerobic glycolysis in symport with protons preventing cytosolic acidification. However, the molecular basis for substrate discrimination by FNTs has remained unclear. Here, we identified a size-selective FNT substrate filter region around an invariant lysine at the bottom of the periplasmic/extracellular vestibule. The selectivity filter is reminiscent of the aromatic/arginine constriction of aquaporin water and solute channels regarding composition, location in the protein, and the size-selection principle. Bioinformatics support an adaptation of the eukaryotic FNT selectivity filter to accommodate larger physiologically relevant substrates. Mutations that affect the diameter at the filter site predictably modulated substrate selectivity. The shape of the vestibule immediately above the filter region further affects selectivity. This study indicates that eukaryotic FNTs evolved to transport larger mono-acid substrates, especially l-lactic acid as a product of energy metabolism.


Assuntos
Ácido Láctico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium falciparum/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Biologia Computacional , Proteínas de Membrana Transportadoras/genética , Mutação , Nitritos/metabolismo , Plasmodium falciparum/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA