Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Cell ; 163(1): 202-17, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26388441

RESUMO

Cancer cells acquire pathological phenotypes through accumulation of mutations that perturb signaling networks. However, global analysis of these events is currently limited. Here, we identify six types of network-attacking mutations (NAMs), including changes in kinase and SH2 modulation, network rewiring, and the genesis and extinction of phosphorylation sites. We developed a computational platform (ReKINect) to identify NAMs and systematically interpreted the exomes and quantitative (phospho-)proteomes of five ovarian cancer cell lines and the global cancer genome repository. We identified and experimentally validated several NAMs, including PKCγ M501I and PKD1 D665N, which encode specificity switches analogous to the appearance of kinases de novo within the kinome. We discover mutant molecular logic gates, a drift toward phospho-threonine signaling, weakening of phosphorylation motifs, and kinase-inactivating hotspots in cancer. Our method pinpoints functional NAMs, scales with the complexity of cancer genomes and cell signaling, and may enhance our capability to therapeutically target tumor-specific networks.


Assuntos
Neoplasias Ovarianas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Feminino , Humanos , Armazenamento e Recuperação da Informação , Modelos Moleculares , Mutação Puntual , Proteínas Quinases/química , Software
2.
Cell ; 149(4): 731-3, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22579276

RESUMO

Drug development for complex diseases is shifting from targeting individual proteins or genes to systems-based attacks targeting dynamic network states. Lee et al. now reveal how the progressive rewiring of a signaling network over time following EGF receptor inhibition leaves triple-negative breast tumors vulnerable to a second, later hit with DNA-damaging drugs, demonstrating that time- and order-dependent drug combinations can be more efficacious in killing cancer cells.

3.
Nature ; 579(7799): 456, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188947

RESUMO

A Retraction to this paper has been published and can be accessed via a link at the top of the paper.

4.
Gastroenterology ; 166(5): 886-901.e7, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38096955

RESUMO

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Células Estreladas do Fígado , Proteína-Lisina 6-Oxidase , Microambiente Tumoral , Humanos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/enzimologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/enzimologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/enzimologia , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/enzimologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/enzimologia , Fosforilação Oxidativa , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Transdução de Sinais
5.
Cell ; 139(5): 891-906, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19931152

RESUMO

Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The importance of ECM remodeling to cancer is appreciated; the relevance of stiffening is less clear. We found that breast tumorigenesis is accompanied by collagen crosslinking, ECM stiffening, and increased focal adhesions. Induction of collagen crosslinking stiffened the ECM, promoted focal adhesions, enhanced PI3 kinase (PI3K) activity, and induced the invasion of an oncogene-initiated epithelium. Inhibition of integrin signaling repressed the invasion of a premalignant epithelium into a stiffened, crosslinked ECM and forced integrin clustering promoted focal adhesions, enhanced PI3K signaling, and induced the invasion of a premalignant epithelium. Consistently, reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy, and lowered tumor incidence. These data show how collagen crosslinking can modulate tissue fibrosis and stiffness to force focal adhesions, growth factor signaling and breast malignancy.


Assuntos
Neoplasias da Mama/patologia , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Envelhecimento , Animais , Colágeno/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Feminino , Fibrose/patologia , Genes ras , Humanos , Glândulas Mamárias Humanas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteína-Lisina 6-Oxidase/metabolismo , Transdução de Sinais
7.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892056

RESUMO

Desmoplasia is a common feature of aggressive cancers, driven by a complex interplay of protein production and degradation. Basigin is a type 1 integral membrane receptor secreted in exosomes or released by ectodomain shedding from the cell surface. Given that soluble basigin is increased in the circulation of patients with a poor cancer prognosis, we explored the putative role of the ADAM12-generated basigin ectodomain in cancer progression. We show that recombinant basigin ectodomain binds ß1 integrin and stimulates gelatin degradation and the migration of cancer cells in a matrix metalloproteinase (MMP)- and ß1-integrin-dependent manner. Subsequent in vitro and in vivo experiments demonstrated the altered expression of extracellular matrix proteins, including fibronectin and collagen type 5. Thus, we found increased deposits of collagen type 5 in the stroma of nude mice tumors of the human tumor cell line MCF7 expressing ADAM12-mimicking the desmoplastic response seen in human cancer. Our findings indicate a feedback loop between ADAM12 expression, basigin shedding, TGFß signaling, and extracellular matrix (ECM) remodeling, which could be a mechanism by which ADAM12-generated basigin ectodomain contributes to the regulation of desmoplasia, a key feature in human cancer progression.


Assuntos
Proteína ADAM12 , Basigina , Proteínas da Matriz Extracelular , Animais , Feminino , Humanos , Camundongos , Proteína ADAM12/metabolismo , Proteína ADAM12/genética , Basigina/metabolismo , Basigina/genética , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Ligação Proteica , Domínios Proteicos , Integrina beta1/metabolismo
8.
Phys Chem Chem Phys ; 25(3): 1513-1537, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36546878

RESUMO

A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.


Assuntos
Disciplinas das Ciências Biológicas , Imagem Individual de Molécula , Biofísica , Disciplinas das Ciências Biológicas/métodos
9.
Cell Mol Life Sci ; 79(4): 204, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35332383

RESUMO

Due to activation of fibroblast into cancer-associated fibroblasts, there is often an increased deposition of extracellular matrix and fibrillar collagens, e.g. type III collagen, in the tumor microenvironment (TME) that leads to tumor fibrosis (desmoplasia). Tumor fibrosis is closely associated with treatment response and poor prognosis for patients with solid tumors. To assure that the best possible treatment option is provided for patients, there is medical need for identifying patients with high (or low) fibrotic activity in the TME. Measuring unique collagen fragments such as the pro-peptides released into the bloodstream during fibrillar collagen deposition in the TME can provide a non-invasive measure of the fibrotic activity. Based on data from 8 previously published cohorts, this review provides insight into the prognostic value of quantifying tumor fibrosis by measuring the pro-peptide of type III collagen in serum of a total of 1692 patients with different solid tumor types and discusses the importance of tumor fibrosis for understanding prognosis and for potentially guiding future drug development efforts that aim at overcoming the poor outcome associated with a fibrotic TME.


Assuntos
Colágeno Tipo III , Neoplasias , Colágeno , Fibrose , Humanos , Peptídeos , Microambiente Tumoral
10.
Am J Physiol Cell Physiol ; 323(2): C486-C493, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759433

RESUMO

One in three persons will develop cancer in their lifetime (Siegel RL, Miller KD, Fuchs HE, Jemal A. CA Cancer J Clin 71: 7-33, 2021) and the majority of these patients will die from the spread of cancer throughout their body-a process known as metastasis. Metastasis is strongly regulated by the tumor microenvironment (TME) comprising cellular and noncellular components. In this review, we will focus on the role of neutrophils regulating the extracellular matrix (ECM), enabling ECM remodeling and cancer progression. In particular, we highlight the role of neutrophil-secreted proteases (NSP) and how these promote metastasis.


Assuntos
Neoplasias , Neutrófilos , Matriz Extracelular/patologia , Granulócitos/patologia , Humanos , Neoplasias/patologia , Neutrófilos/patologia , Microambiente Tumoral/fisiologia
11.
Nat Mater ; 20(6): 892-903, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33495631

RESUMO

The basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores. Our results therefore reveal that BM stiffness is dominant over pore size, and that the mechanical properties of 'normal' BMs determine metastases formation and patient survival independent of cancer-mediated alterations. Thus, identifying individual Net4 protein levels within native BMs in major metastatic organs may have the potential to define patient survival even before tumour formation. The ratio of Net4 to laminin molecules determines BM stiffness, such that the more Net4, the softer the BM, thereby decreasing cancer cell invasion activity.


Assuntos
Membrana Basal/metabolismo , Fenômenos Mecânicos , Metástase Neoplásica , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Humanos , Netrinas/metabolismo
12.
Nature ; 522(7554): 106-110, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26017313

RESUMO

Tumour metastasis is a complex process involving reciprocal interplay between cancer cells and host stroma at both primary and secondary sites, and is strongly influenced by microenvironmental factors such as hypoxia. Tumour-secreted proteins play a crucial role in these interactions and present strategic therapeutic potential. Metastasis of breast cancer to the bone affects approximately 85% of patients with advanced disease and renders them largely untreatable. Specifically, osteolytic bone lesions, where bone is destroyed, lead to debilitating skeletal complications and increased patient morbidity and mortality. The molecular interactions governing the early events of osteolytic lesion formation are currently unclear. Here we show hypoxia to be specifically associated with bone relapse in patients with oestrogen-receptor negative breast cancer. Global quantitative analysis of the hypoxic secretome identified lysyl oxidase (LOX) as significantly associated with bone-tropism and relapse. High expression of LOX in primary breast tumours or systemic delivery of LOX leads to osteolytic lesion formation whereas silencing or inhibition of LOX activity abrogates tumour-driven osteolytic lesion formation. We identify LOX as a novel regulator of NFATc1-driven osteoclastogenesis, independent of RANK ligand, which disrupts normal bone homeostasis leading to the formation of focal pre-metastatic lesions. We show that these lesions subsequently provide a platform for circulating tumour cells to colonize and form bone metastases. Our study identifies a novel mechanism of regulation of bone homeostasis and metastasis, opening up opportunities for novel therapeutic intervention with important clinical implications.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Metástase Neoplásica , Proteína-Lisina 6-Oxidase/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/prevenção & controle , Neoplasias da Mama/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Camundongos , Fatores de Transcrição NFATC/metabolismo , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Receptores de Estrogênio/deficiência , Receptores de Estrogênio/genética
13.
EMBO Rep ; 19(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29967223

RESUMO

The fate of mesenchymal stem cells (MSCs) in the perivascular niche, as well as factors controlling their fate, is poorly understood. Here, we study MSCs in the perivascular microenvironment of endothelial capillaries by modifying a synthetic 3D biomimetic poly(ethylene glycol) (PEG)-hydrogel system in vitro We show that MSCs together with endothelial cells form micro-capillary networks specifically in soft PEG hydrogels. Transcriptome analysis of human MSCs isolated from engineered capillaries shows a prominent switch in extracellular matrix (ECM) production. We demonstrate that the ECM phenotypic switch of MSCs can be recapitulated in the absence of endothelial cells by functionalizing PEG hydrogels with the Notch-activator Jagged1. Moreover, transient culture of MSCs in Notch-inducing microenvironments reveals the reversibility of this ECM switch. These findings provide insight into the perivascular commitment of MSCs by use of engineered niche-mimicking synthetic hydrogels.


Assuntos
Linhagem da Célula , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Receptores Notch/metabolismo , Células da Medula Óssea/citologia , Capilares/efeitos dos fármacos , Capilares/fisiologia , Capilares/ultraestrutura , Linhagem da Célula/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Técnicas de Cocultura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Polietilenoglicóis/farmacologia
14.
Proteomics ; 18(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29178193

RESUMO

The nematode Caenorhabditis elegans is widely used as a model organism to study cell and developmental biology. Quantitative proteomics of C. elegans is still in its infancy and, so far, most studies have been performed on adult worm samples. Here, we used quantitative mass spectrometry to characterize protein level changes across the four larval developmental stages (L1-L4) of C. elegans. In total, we identified 4130 proteins, and quantified 1541 proteins that were present across all four stages in three biological replicates from independent experiments. Using hierarchical clustering and functional ontological analyses, we identified 21 clusters containing proteins with similar protein profiles across the four stages, and highlighted the most overrepresented biological functions in each of these protein clusters. In addition, we used the dataset to identify putative larval stage-specific proteins in each individual developmental stage, as well as in the early and late developmental stages. In summary, this dataset provides system-wide analysis of protein level changes across the four C. elegans larval developmental stages, which serves as a useful resource for the C. elegans research community. MS data were deposited in ProteomeXchange (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the primary accession identifier PXD006676.


Assuntos
Proteínas de Caenorhabditis elegans/análise , Caenorhabditis elegans/química , Caenorhabditis elegans/crescimento & desenvolvimento , Animais , Larva/química , Proteômica , Espectrometria de Massas em Tandem
15.
Calcif Tissue Int ; 102(2): 163-173, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29098360

RESUMO

The five-year survival rate for primary bone cancers is ~ 70% while almost all cases of secondary metastatic bone cancer are terminal. Hypoxia, the deficiency of oxygen which occurs as the rate of tumour growth exceeds the supply of vascularisation, is a key promoter of tumour progression. Hypoxia-driven effects in the primary tumour are wide ranging including changes in gene expression, dysregulation of signalling pathways, resistance to chemotherapy, neovascularisation, increased tumour cell proliferation and migration. Paget's seed and soil theory states that for a metastasising tumour cell 'the seed' it requires the correct microenvironment 'soil' to colonise. Why and how metastasising tumour cells colonise the bone is a complex and intriguing problem. However, once present tumour cells are able to disrupt bone homeostasis through increasing osteoclast activity and downregulating osteoblast function. Osteoclast resorption releases growth factors from the bone matrix that subsequently contribute to the proliferation of invasive tumour cells creating the vicious cycle of bone loss and metastatic cancer progression. Recently, we have shown that hypoxia increases expression and release of lysyl oxidase (LOX) from primary mammary tumours, which in turn disrupts bone homeostasis to favour osteolytic degradation to create pre-metastatic niches in the bone microenvironment. We also demonstrated how treatment with bisphosphonates could block this cancer-induced bone remodelling and reduce secondary bone metastases. This review describes the roles of hypoxia in primary tumour progression to metastasis, with a focus on key signalling pathways and treatment options to reduce patient morbidity and increase survival.


Assuntos
Neoplasias Ósseas/etiologia , Neoplasias Ósseas/secundário , Neoplasias Ósseas/epidemiologia , Neoplasias Ósseas/terapia , Neoplasias da Mama/patologia , Hipóxia Celular , Dipeptidil Peptidase 4/metabolismo , Progressão da Doença , Feminino , Humanos , Modelos Biológicos , Mieloma Múltiplo/patologia , Neuropeptídeo Y/fisiologia , Proteína-Lisina 6-Oxidase/fisiologia
16.
EMBO Rep ; 16(10): 1394-408, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26323721

RESUMO

Cancer-associated fibroblasts (CAFs) interact with tumour cells and promote growth and metastasis. Here, we show that CAF activation is reversible: chronic hypoxia deactivates CAFs, resulting in the loss of contractile force, reduced remodelling of the surrounding extracellular matrix and, ultimately, impaired CAF-mediated cancer cell invasion. Hypoxia inhibits prolyl hydroxylase domain protein 2 (PHD2), leading to hypoxia-inducible factor (HIF)-1α stabilisation, reduced expression of αSMA and periostin, and reduced myosin II activity. Loss of PHD2 in CAFs phenocopies the effects of hypoxia, which can be prevented by simultaneous depletion of HIF-1α. Treatment with the PHD inhibitor DMOG in an orthotopic breast cancer model significantly decreases spontaneous metastases to the lungs and liver, associated with decreased tumour stiffness and fibroblast activation. PHD2 depletion in CAFs co-injected with tumour cells similarly prevents CAF-induced metastasis to lungs and liver. Our data argue that reversion of CAFs towards a less active state is possible and could have important clinical implications.


Assuntos
Hipóxia Celular , Fibroblastos/fisiologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/deficiência , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neoplasias Mamárias Experimentais/patologia , Metástase Neoplásica , Células Estromais/fisiologia , Aminoácidos Dicarboxílicos/farmacologia , Animais , Mama/citologia , Moléculas de Adesão Celular/genética , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Neoplasias Mamárias Experimentais/fisiopatologia , Camundongos , Miosina Tipo II/metabolismo , Invasividade Neoplásica , Técnicas de Cultura de Órgãos , Células Tumorais Cultivadas
17.
Am J Physiol Cell Physiol ; 310(11): C955-67, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053524

RESUMO

The aim of this review is to give an overview of the extracellular matrix (ECM) components that are important for creating structural changes in the premetastatic and metastatic niche. The successful arrival and survival of cancer cells that have left the primary tumor and colonized distant sites depends on the new microenvironment they encounter. The primary tumor itself releases factors into the circulation that travel to distant organs and then initiate structural changes, both non-enzymatic and enzymatic, to create a favorable niche for the disseminating tumor cells. Therapeutic strategies aimed at targeting cell-ECM interactions may well be one of the best viable approaches to combat metastasis and thus improve patient care.


Assuntos
Movimento Celular , Proteínas da Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Microambiente Tumoral , Animais , Proliferação de Células , Sobrevivência Celular , Exossomos/metabolismo , Exossomos/patologia , Proteínas da Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia , Células Neoplásicas Circulantes/patologia , Transdução de Sinais , Transcriptoma , Hipóxia Tumoral
18.
J Pathol ; 235(4): 581-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25408555

RESUMO

Biomechanical strain imposed by age-related thickening of the basal lamina and augmented tissue stiffness in the prostate gland coincides with increased cancer risk. Here we hypothesized that the structural alterations in the basal lamina associated with age can induce mechanotransduction pathways in prostate epithelial cells (PECs) to promote invasiveness and cancer progression. To demonstrate this, we developed a 3D model of PEC acini in which thickening and stiffening of basal lamina matrix was induced by advanced glycation end-product (AGE)-dependent non-enzymatic crosslinking of its major components, collagen IV and laminin. We used this model to demonstrate that antibody targeted blockade of CTLD2, the second of eight C-type lectin-like domains in Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) that can recognize glycosylated collagens, reversed actinomyosin-based contractility [myosin-light chain-2 (MLC2) phosphorylation], loss of cell polarity, loss of cell-cell junctions, luminal infiltration and basal invasion induced by AGE-modified basal lamina matrix in PEC acini. Our in vitro results were concordant with luminal occlusion of acini in the prostate glands of adult Endo180(Δ) (Ex2-6/) (Δ) (Ex2-6) mice, with constitutively exposed CTLD2 and decreased survival of men with early (non-invasive) prostate cancer with high epithelial Endo180 expression and levels of AGE. These findings indicate that AGE-dependent modification of the basal lamina induces invasive behaviour in non-transformed PECs via a molecular mechanism linked to cancer progression. This study provides a rationale for targeting CTLD2 in Endo180 in prostate cancer and other pathologies in which increased basal lamina thickness and tissue stiffness are driving factors. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Membrana Basal/metabolismo , Movimento Celular , Células Epiteliais/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Lectinas de Ligação a Manose/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias da Próstata/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Mitogênicos/metabolismo , Animais , Membrana Basal/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Elasticidade , Humanos , Estimativa de Kaplan-Meier , Lectinas Tipo C/metabolismo , Masculino , Mecanotransdução Celular , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos Knockout , Invasividade Neoplásica , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Estrutura Terciária de Proteína , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Fatores de Tempo
20.
Adv Exp Med Biol ; 899: 245-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27325271

RESUMO

Cancer research has made significant progress in terms of understanding and targeting primary tumors; however, the challenge remains for the successful treatment of metastatic cancers. This highlights the importance to use in vivo models to study the metastatic process, as well as for preclinical testing of compounds that could inhibit metastasis. As a result, proper quantification of metastases from in vivo models is of the utmost significance. Here, we provide a detailed protocol for collecting and handling lung tissues from mice, and guidance for subsequent analysis of metastases, as well as interpretation of data.


Assuntos
Modelos Animais de Doenças , Neoplasias Pulmonares/secundário , Animais , Processamento de Imagem Assistida por Computador , Pulmão/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA