RESUMO
GABAA receptors containing the α6 subunit are highly expressed in cerebellar granule cells and less abundantly in many other neuronal and peripheral tissues. Here, we for the first time summarize their importance for the functions of the cerebellum and the nervous system. The cerebellum is not only involved in motor control but also in cognitive, emotional, and social behaviors. α6ßγ2 GABAA receptors located at cerebellar Golgi cell/granule cell synapses enhance the precision of inputs required for cerebellar timing of motor activity and are thus involved in cognitive processing and adequate responses to our environment. Extrasynaptic α6ßδ GABAA receptors regulate the amount of information entering the cerebellum by their tonic inhibition of granule cells, and their optimal functioning enhances input filtering or contrast. The complex roles of the cerebellum in multiple brain functions can be compromised by genetic or neurodevelopmental causes that lead to a hypofunction of cerebellar α6-containing GABAA receptors. Animal models mimicking neuropsychiatric phenotypes suggest that compounds selectively activating or positively modulating cerebellar α6-containing GABAA receptors can alleviate essential tremor and motor disturbances in Angelman and Down syndrome as well as impaired prepulse inhibition in neuropsychiatric disorders and reduce migraine and trigeminal-related pain via α6-containing GABAA receptors in trigeminal ganglia. Genetic studies in humans suggest an association of the human GABAA receptor α6 subunit gene with stress-associated disorders. Animal studies support this conclusion. Neuroimaging and post-mortem studies in humans further support an involvement of α6-containing GABAA receptors in various neuropsychiatric disorders, pointing to a broad therapeutic potential of drugs modulating α6-containing GABAA receptors. SIGNIFICANCE STATEMENT: α6-Containing GABAA receptors are abundantly expressed in cerebellar granule cells, but their pathophysiological roles are widely unknown, and they are thus out of the mainstream of GABAA receptor research. Anatomical and electrophysiological evidence indicates that these receptors have a crucial function in neuronal circuits of the cerebellum and the nervous system, and experimental, genetic, post-mortem, and pharmacological studies indicate that selective modulation of these receptors offers therapeutic prospects for a variety of neuropsychiatric disorders and for stress and its consequences.
Assuntos
Cerebelo , Receptores de GABA-A , Animais , Cerebelo/metabolismo , Humanos , Neurônios/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gama-AminobutíricoRESUMO
Hypotensive influences of benzodiazepines and other GABAA receptor ligands, recognized in clinical practice, seem to stem from the existence of "vascular" GABAA receptors in peripheral blood vessels, besides any mechanisms in the central and peripheral nervous systems. We aimed to further elucidate the vasodilatatory effects of ligands acting through GABAA receptors. Using immunohistochemistry, the rat aortic smooth muscle layer was found to express GABAA γ2 and α1-5 subunit proteins. To confirm the role of "vascular" GABAA receptors, we investigated the vascular effects of standard benzodiazepines, midazolam, and flumazenil, as well as the novel compound MP-III-058. Using two-electrode voltage clamp electrophysiology and radioligand binding assays, MP-III-058 was found to have modest binding but substantial functional selectivity for α5ß3γ2 over other αxß3γ2 GABAA receptors. Tissue bath assays revealed comparable vasodilatory effects of MP-III-058 and midazolam, both of which at 100 µmol/L concentrations had efficacy similar to prazosin. Flumazenil exhibited weak vasoactivity per se, but significantly prevented the relaxant effects of midazolam and MP-III-058. These studies indicate the existence of functional GABAA receptors in the rat aorta, where ligands exert vasodilatory effects by positive modulation of the benzodiazepine binding site, suggesting the potential for further quest for leads with optimized pharmacokinetic properties as prospective adjuvant vasodilators.
Assuntos
Flumazenil , Midazolam , Animais , Ratos , Midazolam/farmacologia , Flumazenil/farmacologia , Benzodiazepinas/farmacologia , Aorta , Receptores de GABA-A , Ácido gama-AminobutíricoRESUMO
GABAA receptors, members of the pentameric ligand-gated ion channel superfamily, are widely expressed in the central nervous system and mediate a broad range of pharmaco-toxicological effects including bidirectional changes to seizure threshold. Thus, detection of GABAA receptor-mediated seizure liabilities is a big, partly unmet need in early preclinical drug development. This is in part due to the plethora of allosteric binding sites that are present on different subtypes of GABAA receptors and the critical lack of screening methods that detect interactions with any of these sites. To improve in silico screening methods, we assembled an inventory of allosteric binding sites based on structural data. Pharmacophore models representing several of the binding sites were constructed. These models from the NeuroDeRisk IL Profiler were used for in silico screening of a compiled collection of drugs with known GABAA receptor interactions to generate testable hypotheses. Amoxapine was one of the hits identified and subjected to an array of in vitro assays to examine molecular and cellular effects on neuronal excitability and in vivo locomotor pattern changes in zebrafish larvae. An additional level of analysis for our compound collection is provided by pharmacovigilance alerts using FAERS data. Inspired by the Adverse Outcome Pathway framework, we postulate several candidate pathways leading from specific binding sites to acute seizure induction. The whole workflow can be utilized for any compound collection and should inform about GABAA receptor-mediated seizure risks more comprehensively compared to standard displacement screens, as it rests chiefly on functional data.
Assuntos
Receptores de GABA-A , Peixe-Zebra , Animais , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Convulsões/induzido quimicamente , Sítios de Ligação , Ácido gama-AminobutíricoRESUMO
Variants in γ-aminobutyric acid A (GABAA ) receptor genes cause different forms of epilepsy and neurodevelopmental disorders. To date, GABRA4, encoding the α4-subunit, has not been associated with a monogenic condition. However, preclinical evidence points toward seizure susceptibility. Here, we report a de novo missense variant in GABRA4 (c.899C>T, p.Thr300Ile) in an individual with early-onset drug-resistant epilepsy and neurodevelopmental abnormalities. An electrophysiological characterization of the variant, which is located in the pore-forming domain, shows accelerated desensitization and a lack of seizure-protective neurosteroid function. In conclusion, our findings strongly suggest an association between de novo variation in GABRA4 and a neurodevelopmental disorder with epilepsy.
Assuntos
Epilepsia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Receptores de GABA-A , Epilepsia/genética , Humanos , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Receptores de GABA-A/genética , Convulsões/genéticaRESUMO
GABAA (γ-aminobutyric acid type A) receptors are ligand-gated ion channels mediating fast inhibitory transmission in the mammalian brain. Here we report the molecular and electronic mechanism governing the turn-on emission of a fluorescein-based imaging probe able to target the human GABAA receptor. Multiscale calculations evidence a drastic conformational change of the probe from folded in solution to extended upon binding to the receptor. Intramolecular ππ-stacking interactions present in the folded probe are responsible for quenching fluorescence in solution. In contrast, unfolding within the GABAA receptor changes the nature of the bright excited state triggering emission. Remarkably, this turn-on effect only manifests for the dianionic prototropic form of the imaging probe, which is found to be the strongest binder to the GABAA receptor. This study is expected to assist the design of new photoactivatable screening tools for allosteric modulators of the GABAA receptor.
Assuntos
Receptores de GABA-A , Ácido gama-Aminobutírico , Animais , Fluoresceína , Fluorescência , Humanos , Mamíferos/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/farmacologiaRESUMO
The family of GABAA receptors is an important drug target group in the treatment of sleep disorders, anxiety, epileptic seizures, and many others. The most frequent GABAA receptor subtype is composed of two α-, two ß-, and one γ2-subunit, whereas the nature of the α-subunit critically determines the properties of the benzodiazepine binding site of those receptors. Nearly all of the clinically relevant drugs target all GABAA receptor subtypes equally. In the past years, however, drug development research has focused on studying α5-containing GABAA receptors. Beyond the central nervous system, α5-containing GABAA receptors in airway smooth muscles are considered as an emerging target for bronchial asthma. Here, we investigated a novel compound derived from the previously described imidazobenzodiazepine SH-053-2'F-R-CH3 (SH53d-ester). Although SH53d-ester is only moderately selective for α5-subunit-containing GABAA receptors, the derivative SH53d-acid shows superior (>40-fold) affinity selectivity and is a positive modulator. Using two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes and radioligand displacement assays with human embryonic kidney 293 cells, we demonstrated that an acid group as substituent on the imidazobenzodiazepine scaffold leads to large improvements of functional and binding selectivity for α5ß3γ2 over other αxß3γ2 GABAA receptors. Atom level structural studies provide hypotheses for the improved affinity to this receptor subtype. Mutational analysis confirmed the hypotheses, indicating that loop C of the GABAA receptor α-subunit is the dominant molecular determinant of drug selectivity. Thus, we characterize a promising novel α5-subunit-selective drug candidate. SIGNIFICANCE STATEMENT: In the current study we present the detailed pharmacological characterization of a novel compound derived from the previously described imidazobenzodiazepine SH-053-2'F-R-CH3. We describe its superior (>40-fold) affinity selectivity for α5-containing GABAA receptors and show atom-level structure predictions to provide hypotheses for the improved affinity to this receptor subtype. Mutational analysis confirmed the hypotheses, indicating that loop C of the GABAA receptor α-subunit is the dominant molecular determinant of drug selectivity.
Assuntos
Benzodiazepinas/metabolismo , Moduladores GABAérgicos/metabolismo , Receptores de GABA-A/metabolismo , Animais , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Relação Dose-Resposta a Droga , Feminino , Flunitrazepam/química , Flunitrazepam/metabolismo , Flunitrazepam/farmacologia , Moduladores GABAérgicos/química , Moduladores GABAérgicos/farmacologia , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular/métodos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Ratos , Receptores de GABA-A/química , Xenopus laevisRESUMO
Drug-induced Mood- and Cognition-related adverse events (MCAEs) are often only detected during the clinical trial phases of drug development, or even after marketing, thus posing a major safety concern and a challenge for both pharmaceutical companies and clinicians. To fill some gaps in the understanding and elucidate potential biological mechanisms of action frequently associated with MCAEs, we present a unique workflow linking observational population data with the available knowledge at molecular, cellular, and psychopharmacology levels. It is based on statistical analysis of pharmacovigilance reports and subsequent signaling pathway analyses, followed by evidence-based expert manual curation of the outcomes. Our analysis: (a) ranked pharmaceuticals with high occurrence of such adverse events (AEs), based on disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) database, and (b) identified 120 associated genes and common pathway nodes possibly underlying MCAEs. Nearly two-thirds of the identified genes were related to immune modulation, which supports the critical involvement of immune cells and their responses in the regulation of the central nervous system function. This finding also means that pharmaceuticals with a negligible central nervous system exposure may induce MCAEs through dysregulation of the peripheral immune system. Knowledge gained through this workflow unravels putative hallmark biological targets and mediators of drug-induced mood and cognitive disorders that need to be further assessed and validated in experimental models. Thereafter, they can be used to substantially improve in silico/in vitro/in vivo tools for predicting these adversities at a preclinical stage.
Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Afeto/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Mineração de Dados , Transtornos do Humor/induzido quimicamente , Farmacovigilância , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Transtornos do Humor/genética , Transtornos do Humor/metabolismo , Transtornos do Humor/psicologia , Mapas de Interação de Proteínas , Medição de Risco , Transdução de SinaisRESUMO
Many allosteric binding sites that modulate gamma aminobutyric acid (GABA) effects have been described in heteropentameric GABA type A (GABAA) receptors, among them sites for benzodiazepines, pyrazoloquinolinones and etomidate. Diazepam not only binds at the high affinity extracellular "canonical" site, but also at sites in the transmembrane domain. Many ligands of the benzodiazepine binding site interact also with homologous sites in the extracellular domain, among them the pyrazoloquinolinones that exert modulation at extracellular α+/ß- sites. Additional interaction of this chemotype with the sites for etomidate has also been described. We have recently described a new indole-based scaffold with pharmacophore features highly similar to pyrazoloquinolinones as a novel class of GABAA receptor modulators. Contrary to what the pharmacophore overlap suggests, the ligand presented here behaves very differently from the identically substituted pyrazoloquinolinone. Structural evidence demonstrates that small changes in pharmacophore features can induce radical changes in ligand binding properties. Analysis of published data reveals that many chemotypes display a strong tendency to interact promiscuously with binding sites in the transmembrane domain and others in the extracellular domain of the same receptor. Further structural investigations of this phenomenon should enable a more targeted path to less promiscuous ligands, potentially reducing side effect liabilities.
Assuntos
Antagonistas de Receptores de GABA-A/química , Antagonistas de Receptores de GABA-A/farmacologia , Domínios Proteicos/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Desenho de Fármacos , Humanos , Ligantes , Modelos Moleculares , Quinolonas/química , Quinolonas/farmacologia , Receptores de GABA-A/química , Ácido gama-Aminobutírico/metabolismoRESUMO
GABAA receptor modulators are structurally almost as diverse as their target protein. A plethora of heterocyclic scaffolds has been described as modulating this extremely important receptor family. Some made it into clinical trials and, even on the market, some were dismissed. This review focuses on the synthetic accessibility and potential for library synthesis of GABAA receptor modulators containing at least one heterocyclic scaffold, which were disclosed within the last 10 years.
Assuntos
Agonistas de Receptores de GABA-A/síntese química , Antagonistas de Receptores de GABA-A/síntese química , Compostos Heterocíclicos/síntese química , Receptores de GABA-A/química , Bibliotecas de Moléculas Pequenas/síntese química , Regulação Alostérica , Animais , Ensaios Clínicos como Assunto , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Compostos Heterocíclicos/farmacologia , Humanos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-AtividadeRESUMO
The structural resolution of a bound ligand-receptor complex is a key asset to efficiently drive lead optimization in drug design. However, structural resolution of many drug targets still remains a challenging endeavor. In the absence of structural knowledge, scientists resort to structure-activity relationships (SARs) to promote compound development. In this study, we incorporated ligand-based knowledge to formulate a docking scoring function that evaluates binding poses for their agreement with a known SAR. We showcased this protocol by identifying the binding mode of the pyrazoloquinolinone (PQ) CGS-8216 at the benzodiazepine binding site of the GABAA receptor. Further evaluation of the final pose by molecular dynamics and free energy simulations revealed a close proximity between the pendent phenyl ring of the PQ and γ2D56, congruent with the low potency of carboxyphenyl analogues. Ultimately, we introduced the γ2D56A mutation and in fact observed a 10-fold potency increase in the carboxyphenyl analogue, providing experimental evidence in favor of our binding hypothesis.
Assuntos
Pirazóis/farmacologia , Receptores de GABA-A/metabolismo , Benzodiazepinas/metabolismo , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Pirazóis/química , Receptores de GABA-A/química , Software , Relação Estrutura-AtividadeRESUMO
The total syntheses of all stereoisomers of notoincisol A, a recently isolated natural product with potential anti-inflammatory activity, are reported. The asymmetric synthesis was conducted employing a lipase-mediated kinetic resolution, which enables easy access to all required chiral building blocks with the aim of establishing the absolute configuration of the naturally occurring isomer. This was achieved by comparison of optical properties of the isolated compound with the synthetic derivatives obtained. Moreover, an assessment of the biological activity on PPARγ (peroxisome proliferator-activated receptor gamma) as a prominent receptor related to inflammation is reported. Only the natural isomer was found to activate the PPARγ receptor, and this phenomenon could be explained based on molecular docking studies. In addition, the pharmacological profiles of the isomers were determined using the GABAA (gamma-aminobutyric acid A) ion channel receptor as a representative target for allosteric modulation related to diverse CNS activities. These compounds were found to be weak allosteric modulators of the α1ß3 and α1ß2γ2 receptor subtypes.
Assuntos
Produtos Biológicos/farmacologia , Poli-Inos/farmacologia , Regulação Alostérica , Produtos Biológicos/química , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , PPAR gama/metabolismo , Poli-Inos/química , EstereoisomerismoRESUMO
We previously demonstrated that airway smooth muscle (ASM) cells express γ-aminobutyric acid A receptors (GABA(A)Rs), and that GABA(A)R agonists acutely relax ASM. Among the GABA(A)R α subunits, human ASM cells express only α4 and α5, providing the opportunity for selective pharmacologic targeting. Novel GABA(A)R-positive allosteric modulators designed for enhanced α4/α6 subunit selectivity were synthesized using iterative computational analyses (CMD-45 and XHe-III-74). Studies using oocyte heterologous expression systems confirmed that CMD-45 and XHe-III-74 led to significantly greater augmentation of currents induced by a 3% maximal effective concentration (EC3) of GABA [EC3]-induced currents in oocytes expressing α4 or α6 subunits (along with ß3 and γ2) compared with other α subunits. CMD-45 and XHe-III-74 also led to greater ex vivo relaxation of contracted wild-type mouse tracheal rings compared with tracheal rings from GABA(A)R α4 subunit (Gabra4) knockout mice. Furthermore, CMD-45 and XHe-III-74 significantly relaxed precontracted human ASM ex vivo, and, at a low concentration, both ligands led to a significant leftward shift in albuterol-mediated ASM relaxation. In vivo, inhaled XHe-III-74 reduced respiratory system resistance in an asthmatic mouse model. Pretreatment of human ASM cells with CMD-45 and XHe-III-74 inhibited histamine-induced increases in intracellular calcium concentrations in vitro, an effect that was lost when calcium was omitted from the extracellular buffer, suggesting that inhibition of calcium influx due to alterations in plasma membrane potential may play a role in the mechanism of ASM relaxation. Selective targeting of the GABA(A)R α4 subunit with inhaled ligands may be a novel therapeutic pathway to treat bronchoconstriction, while avoiding sedative central nervous system effects, which are largely mediated by α1-3 subunit-containing GABA(A)Rs in the brain.
Assuntos
Broncoconstrição/efeitos dos fármacos , Músculo Liso/metabolismo , Receptores de GABA-A/metabolismo , Traqueia/metabolismo , Animais , Asma/metabolismo , Asma/fisiopatologia , Cálcio/metabolismo , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Músculo Liso/fisiopatologia , Traqueia/fisiopatologia , Xenopus laevisRESUMO
Recent studies have demonstrated that subtype-selective GABAA receptor modulators are able to relax precontracted human airway smooth muscle ex vivo and reduce airway hyper-responsiveness in mice upon aerosol administration. Our goal in this study was to investigate systemic administration of subtype-selective GABAA receptor modulators to alleviate bronchoconstriction in a mouse model of asthma. Expression of GABAA receptor subunits was identified in mouse lungs, and the effects of α4-subunit-selective GABAAR modulators, XHE-III-74EE and its metabolite XHE-III-74A, were investigated in a murine model of asthma (ovalbumin sensitized and challenged BALB/c mice). We observed that chronic treatment with XHE-III-74EE significantly reduced airway hyper-responsiveness. In addition, acute treatment with XHE-III-74A but not XHE-III-74EE decreased airway eosinophilia. Immune suppressive activity was also shown in activated human T-cells with a reduction in IL-2 expression and intracellular calcium concentrations [Ca(2+)]i in the presence of GABA or XHE-III-74A, whereas XHE-III-74EE showed only partial reduction of [Ca(2+)]i and no inhibition of IL-2 secretion. However, both compounds significantly relaxed precontracted tracheal rings ex vivo. Overall, we conclude that the systemic delivery of a α4-subunit-selective GABAAR modulator shows good potential for a novel asthma therapy; however, the pharmacokinetic properties of this class of drug candidates have to be improved to enable better beneficial systemic pharmacodynamic effects.
Assuntos
Asma/tratamento farmacológico , Benzodiazepinas/farmacologia , Receptores de GABA-A/metabolismo , Animais , Asma/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Cobaias , Humanos , Interleucina-2/metabolismo , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Ovalbumina/administração & dosagem , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Xenopus laevisRESUMO
We present the synthesis of new derivatives of natural products magnolol (1) and honokiol (2) and their evaluation as allosteric ligands for modulation of GABAA receptor activity. New derivatives were prepared via metal assisted cross-coupling reactions in two consecutive steps. Compounds were tested by means of two-electrode voltage clamp electrophysiology at the α1ß2γ2 receptor subtype at low GABA concentrations. We have identified several compounds enhancing GABA induced current (IGABA) in the range similar or even higher than the lead structures. At 3µM, compound 8g enhanced IGABA by factor of 443, compared to 162 and 338 of honokiol and magnolol, respectively. Furthermore, 8g at EC10-20 features a much bigger window of separation between the α1ß2γ2 and the α1ß1γ2 subtypes compared to honokiol, and thus improved subtype selectivity.
Assuntos
Compostos de Bifenilo/química , Moduladores GABAérgicos/química , Moduladores GABAérgicos/metabolismo , Lignanas/química , Metais/farmacologia , Oócitos/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Estrutura Molecular , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Subunidades Proteicas , Ratos , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismoRESUMO
GABA(A) receptors are pentameric ligand-gated ion channels involved in fast inhibitory neurotransmission and are allosterically modulated by the anxiolytic, anticonvulsant, and sedative-hypnotic benzodiazepines. Here we show that the prokaryotic homolog ELIC also is activated by GABA and is modulated by benzodiazepines with effects comparable to those at GABA(A) receptors. Crystal structures reveal important features of GABA recognition and indicate that benzodiazepines, depending on their concentration, occupy two possible sites in ELIC. An intrasubunit site is adjacent to the GABA-recognition site but faces the channel vestibule. A second intersubunit site partially overlaps with the GABA site and likely corresponds to a low-affinity benzodiazepine-binding site in GABA(A) receptors that mediates inhibitory effects of the benzodiazepine flurazepam. Our study offers a structural view how GABA and benzodiazepines are recognized at a GABA-activated ion channel.
Assuntos
Benzodiazepinas/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Benzodiazepinas/metabolismo , Sítios de Ligação , Biopolímeros , Cristalografia por Raios X , Canais Iônicos/química , Ligantes , Modelos Moleculares , Receptores de GABA-A/metabolismo , XenopusRESUMO
Benzodiazepines exert their anxiolytic, anticonvulsant, muscle-relaxant and sedative-hypnotic properties by allosterically enhancing the action of GABA at GABA(A) receptors via their benzodiazepine-binding site. Although these drugs have been used clinically since 1960, the molecular basis of this interaction is still not known. By using multiple homology models and an unbiased docking protocol, we identified a binding hypothesis for the diazepam-bound structure of the benzodiazepine site, which was confirmed by experimental evidence. Moreover, two independent virtual screening approaches based on this structure identified known benzodiazepine-site ligands from different structural classes and predicted potential new ligands for this site. Receptor-binding assays and electrophysiological studies on recombinant receptors confirmed these predictions and thus identified new chemotypes for the benzodiazepine-binding site. Our results support the validity of the diazepam-bound structure of the benzodiazepine-binding pocket, demonstrate its suitability for drug discovery and pave the way for structure-based drug design.
Assuntos
Ansiolíticos/química , Simulação por Computador , Diazepam/química , Desenho de Fármacos , Agonistas de Receptores de GABA-A/química , Modelos Químicos , Receptores de GABA-A/química , Sequência de Aminoácidos , Animais , Ansiolíticos/farmacologia , Sítios de Ligação , Cerebelo/efeitos dos fármacos , Cerebelo/fisiologia , Diazepam/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Camundongos , Dados de Sequência Molecular , Relação Estrutura-AtividadeRESUMO
GABAA receptors are the major inhibitory neurotransmitter receptors in the central nervous system and are the targets of many clinically important drugs, which modulate GABA induced chloride flux by interacting with separate and distinct allosteric binding sites. Recently, we described an allosteric modulation occurring upon binding of pyrazoloquinolinones to a novel binding site at the extracellular α+ ß- interface. Here, we investigated the effect of 4-(8-methoxy-3-oxo-3,5-dihydro-2H-pyrazolo[4,3-c]quinolin-2-yl)benzonitrile (the pyrazoloquinolinone LAU 177) at several αß, αßγ and αßδ receptor subtypes. LAU 177 enhanced GABA-induced currents at all receptors investigated, and the extent of modulation depended on the type of α and ß subunits present within the receptors. Whereas the presence of a γ2 subunit within αßγ2 receptors did not dramatically change LAU 177 induced modulation of GABA currents compared to αß receptors, we observed an unexpected threefold increase in modulatory efficacy of this compound at α1ß2,3δ receptors. Steric hindrance experiments as well as inhibition by the functional α+ ß- site antagonist LAU 157 indicated that the effects of LAU 177 at all receptors investigated were mediated via the α+ ß- interface. The stronger enhancement of GABA-induced currents by LAU 177 at α1ß3δ receptors was not observed at α4,6ß3δ receptors. Other experiments indicated that this enhancement of modulatory efficacy at α1ß3δ receptors was not observed with another α+ ß- modulator, and that the efficacy of modulation by α+ ß- ligands is influenced by all subunits present in the receptor complex and by structural details of the respective ligand.
Assuntos
Agonistas GABAérgicos/metabolismo , Receptores de GABA-A/metabolismo , Animais , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Feminino , Agonistas GABAérgicos/farmacologia , Ligantes , Subunidades Proteicas/agonistas , Subunidades Proteicas/metabolismo , Ratos , Xenopus laevisRESUMO
Introduction: The plant-based alkaloid muscimol is a potent agonist of inhibitory GABAA-neurotransmitter receptors. GABAA receptors are a heterogeneous family of pentameric complexes, with 5 out of 19 subunits assembling around the central anion pore. Muscimol is considered to bind to all receptor subtypes at the orthosteric drug binding site at the ß+/α- interface. Recently, we observed that the antipsychotic drugs clozapine (CLZ), loxapine (LOX) and chlorpromazine (CPZ) although exerting functional inhibition on multiple GABAA receptor subtypes showed diverging results in displacing 3H-muscimol. While a complete displacement could be observed in hippocampal membranes by bicuculline (BIC), and no displacement with CPZ, the compounds CLZ and LOX competed partially. Non-sigmoidal, complex dose response curves were indicative of multiple sites. In the current study we now aimed to investigate more extensively this heterogeneity of bicuculline sensitive muscimol sites in rat brain. Methods: We tested membranes from four different brain regions (hippocampus, cerebellum, thalamus and striatum) and selected recombinantly expressed subunit combinations with displacement assays. 3H-muscimol displacement was tested with BIC, LOX, CLZ and CPZ. In silico ligand structural analysis and computational docking was performed. Results: We observed a unique pharmacology of each tested compound in the studied brain regions. Combining two of the tested ligands suggests that in striatum all CLZ sites are contained in the pool of LOX sites, while the CPZ sites may in part be non-overlapping with LOX sites. Experiments on recombinantly expressed receptors indicate, that BIC can displace 3H-muscimol from all tested receptors, while LOX and CLZ display different and variable competition indicative of multiple sites. Molecular docking produced structural correlates of the observed diversity of muscimol sites on the basis of bicuculline bound experimental structures. Discussion: These findings indicate that 3H-muscimol binding sites in rat brain are heterogeneous, with different populations of receptors, which are CPZ, LOX or CLZ sensitive or insensitive. These binding sites show a varying distribution in different rat brain regions. Molecular docking suggests that the so-called loop F region of α subunits drives the observed differences.
RESUMO
Nine out of 19 genes encoding GABAA receptor subunits have been linked to monogenic syndromes characterized by seizures and developmental disorders. Previously, we reported the de novo variant p.(Thr300Ile) in GABRA4 in a patient with epilepsy and neurodevelopmental abnormalities. However, no new cases have been reported since then. Through an international collaboration, we collected molecular and phenotype data of individuals carrying de novo variants in GABRA4. Patients and their parents were investigated either by exome or genome sequencing, followed by targeted Sanger sequencing in some cases. All variants within the transmembrane domain, including the previously reported p.(Thr300Ile) variant, were characterized in silico and analyzed by molecular dynamics (MD) simulation studies. We identified three novel de novo missense variants in GABRA4 (NM_000809.4): c.797 C > T, p.(Pro266Leu), c.899 C > A, p.(Thr300Asn), and c.634 G > A, p.(Val212Ile). The p.(Thr300Asn) variant impacts the same codon as the previously reported variant p.(Thr300Ile) and likely arose post-zygotically as evidenced by sequencing oral mucosal cells. Overlapping phenotypes among affected individuals included developmental delay (4/4), epileptiform EEG abnormalities (3/4), attention deficits (3/4), seizures (2/4), autistic features (2/4) and structural brain abnormalities (2/4). MD simulations of the three variants within the transmembrane domain of the receptor indicate that sub-microsecond scale dynamics differ between wild-type and mutated subunits. Taken together, our findings further corroborate an association between GABRA4 and a neurological phenotype including variable neurodevelopmental, behavioral and epileptic abnormalities.
Assuntos
Deficiências do Desenvolvimento , Epilepsia , Mutação de Sentido Incorreto , Fenótipo , Receptores de GABA-A , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Epilepsia/genética , Epilepsia/patologia , Receptores de GABA-A/genéticaRESUMO
2-arachidonyl glycerol (2-AG) allosterically potentiates GABA(A) receptors via a binding site located in transmembrane segment M4 of the ß2 subunit. Two amino acid residues have been described that are essential for this effect. With the aim to further describe this potential drug target, we performed a cysteine scanning of the entire M4 and part of M3. All four residues in M4 affecting the potentiation here and the two already identified residues locate to the same side of the α-helix. This side is exposed to M3, where further residues were identified. From the fact that the important residues span > 18 Å, we conclude that the hydrophobic tail of the bound 2-AG molecule must be near linear and that the site mainly locates to the inner leaflet but stretches far into the membrane. The influence of the structure of the head group of the ligand molecule on the activity of the molecule was also investigated. We present a model of 2-AG docked to the GABA(A) receptor.