Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta Med ; 89(8): 833-847, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37187191

RESUMO

3ß-hydroxy-Δ5-steroid dehydrogenases (3ßHSDs) are supposed to be involved in 5ß-cardenolide biosynthesis. Here, a novel 3ßHSD (Dl3ßHSD2) was isolated from Digitalis lanata shoot cultures and expressed in E. coli. Recombinant Dl3ßHSD1 and Dl3ßHSD2 shared 70% amino acid identity, reduced various 3-oxopregnanes and oxidised 3-hydroxypregnanes, but only rDl3ßHSD2 converted small ketones and secondary alcohols efficiently. To explain these differences in substrate specificity, we established homology models using borneol dehydrogenase of Salvia rosmarinus (6zyz) as the template. Hydrophobicity and amino acid residues in the binding pocket may explain the difference in enzyme activities and substrate preferences. Compared to Dl3ßHSD1, Dl3ßHSD2 is weakly expressed in D. lanata shoots. High constitutive expression of Dl3ßHSDs was realised by Agrobacterium-mediated transfer of Dl3ßHSD genes fused to the CaMV-35S promotor into the genome of D. lanata wild type shoot cultures. Transformed shoots (35S:Dl3ßHSD1 and 35S:Dl3ßHSD2) accumulated less cardenolides than controls. The levels of reduced glutathione (GSH), which is known to inhibit cardenolide formation, were higher in the 35S:Dl3ßHSD1 lines than in the controls. In the 35S:Dl3ßHSD1 lines cardenolide levels were restored after adding of the substrate pregnane-3,20-dione in combination with buthionine-sulfoximine (BSO), an inhibitor of GSH formation. RNAi-mediated knockdown of the Dl3ßHSD1 yielded several shoot culture lines with strongly reduced cardenolide levels. In these lines, cardenolide biosynthesis was fully restored after addition of the downstream precursor pregnan-3ß-ol-20-one, whereas upstream precursors such as progesterone had no effect, indicating that no shunt pathway could overcome the Dl3ßHSD1 knockdown. These results can be taken as the first direct proof that Dl3ßHSD1 is indeed involved in 5ß-cardenolide biosynthesis.


Assuntos
Digitalis , Digitalis/genética , Digitalis/metabolismo , Cardenolídeos/metabolismo , Escherichia coli/genética , Interferência de RNA , Oxirredutases/genética , Oxirredutases/química , Oxirredutases/metabolismo
2.
Plant Cell Rep ; 40(9): 1631-1646, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34146141

RESUMO

KEY MESSAGE: Studying RNAi-mediated DlP5ßR1 and DlP5ßR2 knockdown shoot culture lines of Digitalis lanata, we here provide direct evidence for the participation of PRISEs (progesterone 5ß-reductase/iridoid synthase-like enzymes) in 5ß-cardenolide formation. Progesterone 5ß-reductases (P5ßR) are assumed to catalyze the reduction of progesterone to 5ß-pregnane-3,20-dione, which is a crucial step in the biosynthesis of the 5ß-cardenolides. P5ßRs are encoded by VEP1-like genes occurring ubiquitously in embryophytes. P5ßRs are substrate-promiscuous enone-1,4-reductases recently termed PRISEs (progesterone 5ß-reductase/iridoid synthase-like enzymes). Two PRISE genes, termed DlP5ßR1 (AY585867.1) and DlP5ßR2 (HM210089.1) were isolated from Digitalis lanata. To give experimental evidence for the participation of PRISEs in 5ß-cardenolide formation, we here established several RNAi-mediated DlP5ßR1 and DlP5ßR2 knockdown shoot culture lines of D. lanata. Cardenolide contents were lower in D. lanata P5ßR-RNAi lines than in wild-type shoots. We considered that the gene knockdowns may have had pleiotropic effects such as an increase in glutathione (GSH) which is known to inhibit cardenolide formation. GSH levels and expression of glutathione reductase (GR) were measured. Both were higher in the Dl P5ßR-RNAi lines than in the wild-type shoots. Cardenolide biosynthesis was restored by buthionine sulfoximine (BSO) treatment in Dl P5ßR2-RNAi lines but not in Dl P5ßR1-RNAi lines. Since progesterone is a precursor of cardenolides but can also act as a reactive electrophile species (RES), we here discriminated between these by comparing the effects of progesterone and methyl vinyl ketone, a small RES but not a precursor of cardenolides. To the best of our knowledge, we here demonstrated for the first time that P5ßR1 is involved in cardenolide formation. We also provide further evidence that PRISEs are also important for plants dealing with stress by detoxifying reactive electrophile species (RES).


Assuntos
Cardenolídeos/metabolismo , Digitalis/genética , Digitalis/metabolismo , Oxirredutases/genética , Proteínas de Plantas/genética , Butanonas/farmacologia , Butionina Sulfoximina/farmacologia , Digitalis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Glutationa/farmacologia , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Progesterona/farmacologia , Interferência de RNA , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Metabolites ; 12(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35050133

RESUMO

Small or specialized natural products (SNAPs) produced by plants vary greatly in structure and function, leading to selective advantages during evolution. With a limited number of genes available, a high promiscuity of the enzymes involved allows the generation of a broad range of SNAPs in complex metabolic networks. Comparative metabolic studies may help to understand why-or why not-certain SNAPs are produced in plants. Here, we used the wound-induced, vein patterning regulating VEP1 (AtStR1, At4g24220) and its paralogue gene on locus At5g58750 (AtStR2) from Arabidopsis to study this issue. The enzymes encoded by VEP1-like genes were clustered under the term PRISEs (progesterone 5ß-reductase/iridoid synthase-like enzymes) as it was previously demonstrated that they are involved in cardenolide and/or iridoid biosynthesis in other plants. In order to further understand the general role of PRISEs and to detect additional more "accidental" roles we herein characterized A. thaliana steroid reductase 1 (AtStR1) and compared it to A. thaliana steroid reductase 2 (AtStR2). We used A. thaliana Col-0 wildtype plants as well as VEP1 knockout mutants and VEP1 knockout mutants overexpressing either AtStR1 or AtStR2 to investigate the effects on vein patterning and on the stress response after treatment with methyl vinyl ketone (MVK). Our results added evidence to the assumption that AtStR1 and AtStR2, as well as PRISEs in general, play specific roles in stress and defense situations and may be responsible for sudden metabolic shifts.

4.
Planta Med ; 76(9): 923-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20514608

RESUMO

Plants of the genus Digitalis produce 5 beta-cardenolides that are used in the therapy of cardiac insufficiency in humans. 3 beta-Hydroxysteroid dehydrogenase (3 beta-HSD) and progesterone 5 beta-reductase (P5 betaR) are both supposed to be important enzymes in the biosynthesis of these natural products. Activity and gene expression were demonstrated for both enzymes in cardenolide-accumulating leaves of Digitalis lanata but also in cardenolide-free permanent cell suspension cultures initiated from D. lanata leaf tissue. Enzyme activities were determined and quantified by HPLC and GC-MS methods. Expression of the respective genes, namely AY585867.1 (P5betaR gene) and DQ466890.1 (3beta-HSD gene), was made evident by real-time polymerase chain reaction (qPCR) analysis. We demonstrate for the first time that the P5betaR gene, encoding an enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in cardenolide-free tissues of cardenolide-containing plants.


Assuntos
3-Hidroxiesteroide Desidrogenases/metabolismo , Cardenolídeos/metabolismo , Digitalis/genética , Expressão Gênica , Genes de Plantas , Oxirredutases/metabolismo , 3-Hidroxiesteroide Desidrogenases/genética , Técnicas de Cultura de Células , Digitalis/enzimologia , Digitalis/metabolismo , Oxirredutases/genética , Folhas de Planta , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
J Agric Food Chem ; 63(46): 10112-20, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26537436

RESUMO

A steroid 5ß-reductase gene corresponding to the hypothetical protein LOC100247199 from leaves of Vitis vinifera (var. 'Chardonnay') was cloned and overexpressed in Escherichia coli. The recombinant protein showed 5ß-reductase activity when progesterone was used as a substrate. The reaction was stereoselective, producing only 5ß-products such as 5ß-pregnane-3,20-dione. Other small substrates (terpenoids and enones) were also accepted as substrates, indicating the highly promiscuous character of the enzyme class. Our results show that the steroid 5ß-reductase gene, encoding an orthologous enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in leaves of the cardenolide-free plant V. vinifera. We emphasize the fact that, on some occasions, different reductases (e.g., progesterone 5ß-reductase and monoterpenoid reductase) can also use molecules that are similar to the final products as a substrate. Therefore, in planta, the different reductases may contribute to the immense number of diverse small natural products finally leading to the flavor of wine.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Clonagem Molecular , Expressão Gênica , Folhas de Planta/enzimologia , Vitis/enzimologia , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/química , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Cardenolídeos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Modelos Moleculares , Proteínas Recombinantes/metabolismo , Paladar , Vinho/análise
6.
Phytochemistry ; 100: 26-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24512841

RESUMO

3ß-Hydroxysteroid dehydrogenases (3ßHSD) are supposed to be involved in cardenolide biosynthesis in plants. Erysimum crepidifolium Rchb., a member of the Brassicaceae accumulating cardenolides, is a close relative to Arabidopsis thaliana. Full length cDNAs encoding for three individual 3ßHSDs (EcHSD1, EcHSD2, EcHSD3) were isolated from E. crepidifolium leaves. EcHSD1 and EcHSD2 encode proteins assembled from 257 amino acids whereas EcHSD3 encodes a protein assembled from 260 amino acids. All three proteins qualify as members of the short-chain dehydrogenases/reductases family of proteins (SDRs). EcHSD1 and EcHSD2 shared a high amino acid sequence identity of about 86% and 91% with putative 3ßHSDs of A. thaliana (AT2G47140 and AT2G47130). EcHSD3 showed high homology to the A. thaliana SDRs AT2G47150 (74%) and AT2G47120 (81%). All three EcHSD genes were expressed in Escherichia coli and the recombinant enzymes were characterized biochemically. All three recombinant EcHSDs catalyzed the dehydrogenation of pregnenolone and the 3-reduction of 5α/ß-pregnane-3,20-dione when NAD and NADH were used as cosubstrates, respectively. After exposure to different stress conditions, no increased transcription was seen for EcHSD1 whereas EcHSD2 was expressed four times higher under osmotic stress than under control conditions. EcHSD3 expression was 10 times and 6 times higher after osmotic stress and MeJA treatment, respectively, than in controls.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Cardenolídeos/metabolismo , Erysimum/genética , Erysimum/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Clonagem Molecular , Erysimum/fisiologia , Cinética , Pressão Osmótica , Análise de Sequência , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA