Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334364

RESUMO

The presence of neutralizing antibodies against SARS-CoV-2 in blood, acquired through previous infection or vaccination, is known to prevent the (re)occurrence of outbreaks unless the virus mutates. Therefore, the measurement of neutralizing antibodies constitutes an indispensable tool in assessing an individual's and a population's immunity against SARS-CoV-2. For this reason, we have developed an innovative lateral flow assay (LFA) capable of detecting blood-derived neutralizing antibodies using a biomimetic SARS-CoV-2 mock virus system. Here, functionalized gold nanoparticles (AuNPs) featuring the trimeric spike (S) protein at its surface imitate the virus's structure and are applied to monitor the presence and efficacy of neutralizing antibodies in blood samples. The detection principle relies on the interaction between mock virus and the immobilized angiotensin-converting enzyme 2 (ACE2) receptor, which is inhibited when neutralizing antibodies are present. To further enhance the sensitivity of our competitive assay and identify low titers of neutralizing antibodies, an additional mixing pad is embedded into the device to increase the interaction time between mock virus and neutralizing antibodies. The developed LFA is benchmarked against the WHO International Standard (21/338) and demonstrated reliable quantification of neutralizing antibodies that inhibit ACE2 binding events down to a detection limit of an antibody titer of 59 IU/mL. Additional validation using whole blood and plasma samples showed reproducible results and good comparability to a laboratory-based reference test, thus highlighting its applicability for point-of-care testing.

2.
Biomed Microdevices ; 26(3): 28, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825594

RESUMO

Microfluidic-based point-of-care diagnostics offer several unique advantages over existing bioanalytical solutions, such as automation, miniaturisation, and integration of sensors to rapidly detect on-site specific biomarkers. It is important to highlight that a microfluidic POC system needs to perform a number of steps, including sample preparation, nucleic acid extraction, amplification, and detection. Each of these stages involves mixing and elution to go from sample to result. To address these complex sample preparation procedures, a vast number of different approaches have been developed to solve the problem of reagent storage and delivery. However, to date, no universal method has been proposed that can be applied as a working solution for all cases. Herein, both current self-contained (stored within the chip) and off-chip (stored in a separate device and brought together at the point of use) are reviewed, and their merits and limitations are discussed. This review focuses on reagent storage devices that could be integrated with microfluidic devices, discussing further issues or merits of these storage solutions in two different sections: direct on-chip storage and external storage with their application devices. Furthermore, the different microvalves and micropumps are considered to provide guidelines for designing appropriate integrated microfluidic point-of-care devices.


Assuntos
Dispositivos Lab-On-A-Chip , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Indicadores e Reagentes/química , Desenho de Equipamento
3.
J Chem Inf Model ; 64(4): 1245-1250, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38311838

RESUMO

Central ring systems are the most important part of bioactive molecules. They determine molecule shape, keep substituents in their proper positions, and also influence global molecular properties. In the present study, a database of 4 million medicinal chemistry-relevant ring systems has been created, not by crude random enumeration but by applying a set of rules derived by analyzing rings present in bioactive molecules. The aromatic properties and tautomer stability of generated rings have also been considered to ensure that the rings in the database are stable and chemically reasonable. 99.2% of these rings are novel and not included in molecules in the ChEMBL or PubChem databases. This large database of ring systems has been created with the goal to provide support for bioisosteric design and scaffold hopping as well as to be used in generative chemistry applications. The complete set of created rings is available for download in the SMILES format from https://peter-ertl.com/molecular/data/.


Assuntos
Química Farmacêutica , Bases de Dados Factuais
4.
Bioeng Transl Med ; 9(3): e10604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38818126

RESUMO

Affecting millions of individuals worldwide, neurodegenerative diseases (NDDs) pose a significant and growing health concern in people over the age of 60 years. Contributing to this trend are the steady increase in the aging population coupled with a persistent lack of disease-altering treatment strategies targeting NDDs. The absence of efficient therapeutics can be attributed to high failure rates in clinical trials and the ineptness of animal models in preceding preclinical studies. To that end, in recent years, significant research effort has been dedicated to the development of human cell-based preclinical disease models characterized by a higher degree of predictive validity. However, a key requirement of any in vitro model constitutes the precise knowledge and replication of the target tissues' (patho-)physiological microenvironment. Herein, microphysiological systems have demonstrated superiority over conventional static 2D/3D in vitro cell culture systems, as they allow for the emulation and continuous monitoring of the onset, progression, and remission of disease-associated phenotypes. This review provides an overview of recent advances in the field of NDD research using organ-on-a-chip platforms. Specific focus is directed toward non-invasive sensing strategies encompassing electrical, electrochemical, and optical sensors. Additionally, promising on- and integrable off-chip sensing strategies targeting key analytes in NDDs will be presented and discussed in detail.

5.
Eur J Pharm Biopharm ; 197: 114213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346479

RESUMO

Neutral and positively charged archaeal ether lipids (AEL) have been studied for their utilization as novel delivery systems for pDNA, showing efficient immune response with a strong memory effect while lacking noticeable toxicity. Recent technological advances placed mRNA lipid nanoparticles (LNPs) at the forefront of next-generation delivery systems; however, no study has examined AELs in mRNA delivery yet. In this study, we investigated either a crude lipid extract or the purified tetraether lipid caldarchaeol from Sulfolobus acidocaldarius as potential novel excipients for mRNA LNPs. Depending on their molar share in the respective LNP, particle uptake, and mRNA expression levels could be increased by up to 10-fold in in vitro transfection experiments using both primary cell sources (HSMM) and established cell lines (Caco-2, C2C12) compared to a well-known reference formulation. This increased efficiency might be linked to a substantial effect on endosomal escape, indicating fusogenic and lyotropic features of AELs. This study shows the high value of archaeal ether lipids for mRNA delivery and provides a solid foundation for future in vivo experiments and further research.


Assuntos
Lipídeos , Nanopartículas , Humanos , Éter , Archaea , RNA Mensageiro/genética , Células CACO-2 , Lipossomos , Transfecção , Éteres , Etil-Éteres , RNA Interferente Pequeno
6.
ACS Omega ; 9(7): 8533-8542, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405462

RESUMO

Fibrinogen is a coagulation factor in human blood and the first one to reach critical levels in major bleeding. Hypofibrinogenemia (a too low fibrinogen concentration in blood) poses great challenges to first responders, clinicians, and healthcare providers since it represents a risk factor for exsanguination and massive transfusion requirements. Thus, the rapid assessment of the fibrinogen concentration at the point of care has gained considerable importance in preventing and managing major blood loss. However, in whole blood measurements, hematocrit variations affect the amount (volume fraction) of plasma that passes the detection zone. In an attempt to accurately determine realistic critical levels of fibrinogen (<1.5 mg/mL) in patients needing immediate treatment and medical interventions, we have developed novel diagnostic systems capable of estimating hematocrit and critical fibrinogen concentrations. A lateral flow assay (LFA) for the detection of fibrinogen has been developed by establishing a workflow employing rapid characterization methods to streamline LFA development. The integration of two detection lines enables (i) the identification of fibrinogen (first line) present in the sample and (ii) the determination of the clinically critical fibrinogen concentrations below 1.5 mg/mL (second line). Furthermore, the paper-based separation of blood cells from plasma provides a semiquantitative estimate of the hematocrit by analyzing the fractions. Initial validation of the point-of-care (PoC) hematocrit test revealed good comparability to a standard laboratory method. The developed diagnostic systems have the ability to accelerate decision-making in cases with major bleeding.

7.
Biosensors (Basel) ; 14(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38785727

RESUMO

Heart failure represents a primary cause of hospitalization and mortality in both developed and developing countries, often necessitating heart transplantation as the only viable recovery path. Despite advances in transplantation medicine, organ rejection remains a significant post-operative challenge, traditionally monitored through invasive endomyocardial biopsies (EMB). This study introduces a rapid prototyping approach to organ rejection monitoring via a sensor-integrated flexible patch, employing electrical impedance spectroscopy (EIS) for the non-invasive, continuous assessment of resistive and capacitive changes indicative of tissue rejection processes. Utilizing titanium-dioxide-coated electrodes for contactless impedance sensing, this method aims to mitigate the limitations associated with EMB, including procedural risks and the psychological burden on patients. The biosensor's design features, including electrode passivation and three-dimensional microelectrode protrusions, facilitate effective monitoring of cardiac rejection by aligning with the heart's curvature and responding to muscle contractions. Evaluation of sensor performance utilized SPICE simulations, scanning electron microscopy, and cyclic voltammetry, alongside experimental validation using chicken heart tissue to simulate healthy and rejected states. The study highlights the potential of EIS in reducing the need for invasive biopsy procedures and offering a promising avenue for early detection and monitoring of organ rejection, with implications for patient care and healthcare resource utilization.


Assuntos
Espectroscopia Dielétrica , Humanos , Transplante de Coração , Técnicas Biossensoriais , Rejeição de Enxerto/diagnóstico , Animais , Galinhas , Monitorização Fisiológica
8.
Talanta ; 274: 126079, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608631

RESUMO

Simple and low-cost biosensing solutions are suitable for point-of-care applications aiming to overcome the gap between scientific concepts and technological production. To compete with sensitivity and selectivity of golden standards, such as liquid chromatography, the functionalization of biosensors is continuously optimized to enhance the signal and improve their performance, often leading to complex chemical assay development. In this research, the efforts are made on optimizing the methodology for electrochemical reduction of graphene oxide to produce thin film-modified gold electrodes. Under the employed specific conditions, 20 cycles of cyclic voltammetry (CV) are shown to be optimal for superior electrical activation of graphene oxide into electrochemically reduced graphene oxide (ERGO). This platform is further used to develop a matrix metalloproteinase 2 (MMP-2) biosensor, where specific anti-MMP2 aptamers are utilized as a biorecognition element. MMP-2 is a protein which is typically overexpressed in tumor tissues, with important roles in tumor invasion, metastasis as well as in tumor angiogenesis. Based on impedimetric measurements, we were able to detect as low as 3.32 pg mL-1 of MMP-2 in PBS with a dynamic range of 10 pg mL-1 - 10 ng mL-1. Further experiments with real blood samples revealed a promising potential of the developed sensor for direct measurement of MMP-2 in complex media. High specificity of detection is demonstrated - even to the closely related enzyme MMP-9. Finally, the potential of reuse was demonstrated by signal restoration after experimental detection of MMP-2.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Grafite , Metaloproteinase 2 da Matriz , Grafite/química , Metaloproteinase 2 da Matriz/sangue , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/análise , Aptâmeros de Nucleotídeos/química , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Oxirredução , Limite de Detecção , Eletrodos , Ouro/química
9.
RSC Adv ; 14(19): 13209-13217, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38655484

RESUMO

Human flavin-containing monooxygenase 3 (FMO3) is a drug-metabolizing enzyme (DME) which is known to be highly polymorphic. Some of its polymorphic variants are associated with inter-individual differences that contribute to drug response. In order to measure these differences, the implementation of a quick and efficient in vitro assay is highly desirable. To this end, in this work a microfluidic immobilized enzyme reactor (µ-IMER) was developed with four separate serpentines where FMO3 and its two common polymorphic variants (V257M and E158K) were covalently immobilized via glutaraldehyde cross-linking in the presence of a polylysine coating. Computational fluid dynamics simulations were performed to calculate the selected substrate retention time in serpentines with different surface areas at various flow rates. The oxidation of tamoxifen, an anti-breast cancer drug, was used as a model reaction to characterize the new device in terms of available surface area for immobilization, channel coating, and applied flow rate. The highest amount of product was obtained when applying a 10 µL min-1 flow rate on polylysine-coated serpentines with a surface area of 90 mm2 each. Moreover, these conditions were used to test the device as a multi-enzymatic platform by simultaneously assessing the conversion of tamoxifen by FMO3 and its two polymorphic variants immobilized on different serpentines of the same chip. The results obtained demonstrate that the differences observed in the conversion of tamoxifen within the chip are similar to those already published (E158K > WT > V257M). Therefore, this microfluidic platform provides a feasible option for fabricating devices for personalised medicine.

10.
Biosensors (Basel) ; 14(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38392026

RESUMO

Due to advances in additive manufacturing and prototyping, affordable and rapid microfluidic sensor-integrated assays can be fabricated using additive manufacturing, xurography and electrode shadow masking to create versatile platform technologies aimed toward qualitative assessment of acute cytotoxic or cytolytic events using stand-alone biochip platforms in the context of environmental risk assessment. In the current study, we established a nasal mucosa biosensing platform using RPMI2650 mucosa cells inside a membrane-integrated impedance-sensing biochip using exclusively rapid prototyping technologies. In a final proof-of-concept, we applied this biosensing platform to create human cell models of nasal mucosa for monitoring the acute cytotoxic effect of zinc oxide reference nanoparticles. Our data generated with the biochip platform successfully monitored the acute toxicity and cytolytic activity of 6 mM zinc oxide nanoparticles, which was non-invasively monitored as a negative impedance slope on nasal epithelial models, demonstrating the feasibility of rapid prototyping technologies such as additive manufacturing and xurography for cell-based platform development.


Assuntos
Técnicas Biossensoriais , Óxido de Zinco , Humanos , Impedância Elétrica , Microfluídica
11.
J Med Chem ; 67(3): 2118-2128, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38270627

RESUMO

We herein describe the development and application of a modular technology platform which incorporates recent advances in plate-based microscale chemistry, automated purification, in situ quantification, and robotic liquid handling to enable rapid access to high-quality chemical matter already formatted for assays. In using microscale chemistry and thus consuming minimal chemical matter, the platform is not only efficient but also follows green chemistry principles. By reorienting existing high-throughput assay technology, the platform can generate a full package of relevant data on each set of compounds in every learning cycle. The multiparameter exploration of chemical and property space is hereby driven by active learning models. The enhanced compound optimization process is generating knowledge for drug discovery projects in a time frame never before possible.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA