Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 19(45): 8832-8848, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947361

RESUMO

The rheology of complex coacervates can be elegantly tuned via the design and control of specific non-covalent hydrophobic interactions between the complexed polymer chains. The well-controlled balance between elasticity and energy dissipation makes complex coacervates perfect candidates for pressure-sensitive adhesives (PSAs). In this work, the polyanion poly(3-sulfopropyl methacrylate) (PSPMA) and the polycation quaternized poly(4-vinylpyridine) (QP4VP) were used to prepare complex coacervates in water. Progressive increase of hydrophobicity is introduced to the polyanion via partial deprotection of the protected precursor. Hence, the polymer chains in the complex coacervates can interact via both electrostatic (controlled by the amount of salt) and hydrophobic (controlled by the deprotection degree) interactions. It was observed that: (i) a rheological time-salt-hydrophobicity superposition principle is applicable, and can be used as a predictive tool for rheology, (ii) the slowdown of the stress relaxation dynamics, due to the increase of hydrophobic stickers (lower deprotection degree), can be captured by the sticky-Rouse model, and (iii) the systematic variation of hydrophobic stickers, amount of salt, and molecular weight of the polymers, enables the identification of optimizing parameters to design aqueous PSA systems. The presented results offer new pathways to control the rheology of complex coacervates and their applicability as PSAs.

2.
Angew Chem Int Ed Engl ; 59(18): 7042-7048, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32030858

RESUMO

The combination of supramolecular chemistry and soft colloids as microgels represents an ambitious way to develop multi-versatile colloidal assemblies. Hereafter, terpyridine-functionalized poly(N-isopropylacrylamide) (PNiPAM) microgel building blocks are shown to undergo an assemble-freeze-disassemble process. The microgel assemblies, which are controlled by monitoring the attractive and repulsive potentials between the soft colloidal particles, are then frozen by forming inter-particle metal-terpyridine bis-complexes upon addition of the metallic cation (such as FeII , CoII ). By oxidation of the metal-terpyridine bis-complex links, the aggregates open up, which is due to the complex dissociation releasing the connected particles in the form of single microgels. We extended our work to the development of 1D filaments and 2D membranes materials made of soft particles connected via supramolecular chemistry.

3.
Soft Matter ; 15(5): 963-972, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30652180

RESUMO

The objective of this work is to synthesize highly stable thermoresponsive microgels that could be used in diverse applications. To achieve this, N-isopropylacrylamide (NiPAM) based microgels were first synthesized by surfactant-free precipitation polymerization of NiPAM in the presence of poly(ethylene glycol)methacrylate (PEG) as a macro-comonomer and methylenebisacrylamide (MBA) as a chemical crosslinker. By combining a complete set of techniques such as dynamic light scattering (DLS), scanning electron microscopy (SEM), zetametry, 1H NMR and micro-differential scanning calorimetry (µDSC), we clearly demonstrate that (i) the incorporation of the PEG chains controls the size and the polydispersity of the NiPAM-based microgels, whereas the thermal behavior in solution (enthalpy, volume phase transition temperature (VPTT)) remains almost the same as for pure NiPAM microgels; (ii) the PEG chains are mainly located on the microgel periphery; and (iii) the presence of the PEG chains strongly increases the colloidal stability of microgels in electrolyte solutions at high temperatures.

4.
Macromolecules ; 57(7): 3190-3201, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38616812

RESUMO

Hybrid hydrogels are hydrogels that exhibit heterogeneity in the network architecture by means of chemical composition and/or microstructure. The different types of interactions, together with structural heterogeneity, which can be created on different length scales, determine the mechanical properties of the final material to a large extent. In this work, the microstructure-mechanical property relationships for a hybrid hydrogel that contains both electrostatic and covalent interactions are investigated. The hybrid hydrogel is composed of a microphase-separated polyelectrolyte complex network (PEC) made of poly(4-styrenesulfonate) and poly(diallyldimethylammonium chloride) within a soft and elastic polyacrylamide hydrogel network. The system exhibits a granular structure, which is attributed to the liquid-liquid phase separation into complex coacervate droplets induced by the polymerization and the subsequent crowding effect of the polyacrylamide chains. The coacervate droplets are further hardened into PEC granules upon desalting the hydrogel. The structure formation is confirmed by a combination of electron microscopic imaging and molecular dynamics simulations. The interpenetration of both networks is shown to enhance the toughness of the resulting hydrogels due to the dissipative behavior of the PEC through the rupture of electrostatic interactions. Upon cyclic loading-unloading, the hydrogels show recovery of up to 80% of their original dissipative behavior in less than 300 s of rest with limited plasticity. The granular architecture and the tough and self-recoverable properties of the designed hybrid networks make them good candidates for applications, such as shape-memory materials, actuators, biological tissue mimics, and elastic substrates for soft sensors.

5.
Macromolecules ; 57(2): 652-663, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38283122

RESUMO

It is well-known that the phase behavior and physicochemical and adhesive properties of complex coacervates are readily tuneable with the salt concentration of the medium. For toxicity reasons, however, the maximum applicable salt concentration in biomedical applications is typically low. Consequently, other strategies must be implemented in order to optimize the properties of the resulting complex coacervates. In this work, the effect of the charge density of a strong polyanion on the properties of complex coacervates was studied. To control this charge density, statistical anionic/charge-neutral hydrophilic copolymers were synthesized by means of an elegant protection/deprotection strategy and subsequently complexed with a strong polycation. The resulting complexes were observed to have an increasing water content as well as faster relaxation dynamics, with either increasing salt concentration or decreasing charge density. Time-salt and time-salt-charge density superpositions could be performed and showed that the relaxation mechanism of the complex coacervates remained unchanged. When the charge density was decreased, lower salt concentration complexes became suitable for viscoelastic adhesion with improved injectability. Such complex coacervates are promising candidates for injectable biomedical adhesives.

6.
Adv Mater ; 35(28): e2210769, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36916861

RESUMO

3D bioprinting is a powerful fabrication technique in biomedical engineering, which is currently limited by the number of available materials that meet all physicochemical and cytocompatibility requirements for biomaterial inks. Inspired by the key role of coacervation in the extrusion and spinning of many natural materials, hyaluronic acid-chitosan complex coacervates are proposed here as tunable biomaterial inks. Complex coacervates are obtained through an associative liquid-liquid phase separation driven by electrostatic attraction between oppositely charged macromolecules. They offer bioactive properties and facile modulation of their mechanical properties through mild physicochemical changes in the environment, making them attractive for 3D bioprinting. Fine-tuning the salt concentration, pH, and molecular weight of the constituent polymers results in biomaterial inks that are printable in air and water. The biomaterial ink, initially a viscoelastic fluid, transitions into a viscoelastic solid upon printing due to dehydration (for printing in air) or due to a change in pH and ionic composition (for printing in solution). Consequently, scaffolds printed using the complex coacervate inks are stable without the need for post-printing processing. Fabricated cell culture scaffolds are cytocompatible and show long-term topological stability. These results pave the way to a new class of easy-to-handle tunable biomaterials for biofabrication.


Assuntos
Bioimpressão , Tinta , Bioimpressão/métodos , Impressão Tridimensional , Reologia , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Hidrogéis/química
7.
Macromolecules ; 56(15): 5891-5904, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576476

RESUMO

Complex coacervates make up a class of versatile materials formed as a result of the electrostatic associations between oppositely charged polyelectrolytes. It is well-known that the viscoelastic properties of these materials can be easily altered with the ionic strength of the medium, resulting in a range of materials from free-flowing liquids to gel-like solids. However, in addition to electrostatics, several other noncovalent interactions could influence the formation of the coacervate phase depending on the chemical nature of the polymers involved. Here, the importance of intermolecular hydrogen bonds on the phase behavior, microstructure, and viscoelasticity of hyaluronic acid (HA)-chitosan (CHI) complex coacervates is revealed. The density of intermolecular hydrogen bonds between CHI units increases with increasing pH of coacervation, which results in dynamically arrested regions within the complex coacervate, leading to elastic gel-like behavior. This pH-dependent behavior may be very relevant for the controlled solidification of complex coacervates and thus for polyelectrolyte material design.

8.
Science ; 377(6607): 707-708, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35951691

RESUMO

Ultrasound can be used to promote the physical interlocking of adhesives and tissues.


Assuntos
Adesivos , Equipamentos Cirúrgicos , Ondas Ultrassônicas , Humanos
9.
ACS Macro Lett ; 11(1): 20-25, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574801

RESUMO

Frozen complex coacervate core micelles (C3Ms) were developed as a class of particle stabilizers for Pickering emulsions. The C3Ms are composed of a core of electrostatically interacting weak polyelectrolytes, poly(acrylic acid) (pAA) and poly(dimethylaminopropylacrylamide) (pDMAPAA), surrounded by a corona of water-soluble and surface active poly(N-isopropylacrylamide) (pNiPAM). Mixing parameters of the two polymer solutions, including pH, mixing method, charge ratio, and salinity of the medium, were carefully controlled, leading to monodisperse, colloidally stable C3Ms. A combination of dynamic light scattering and proton nuclear magnetic resonance experiments showed that the C3Ms gradually disassembled from a dynamically frozen core state in pure water into free polyelectrolyte chains above 0.8 M NaCl. Upon formulation of dodecane-in-water emulsions, the frozen C3Ms adsorb as particles at the droplet interfaces in striking contrast with most of the conventional micelles made of amphiphilic block copolymers which fall apart at the interface. Eventually, increasing the salt concentration of the system triggered disassembly of the C3Ms, which led to emulsion destabilization.


Assuntos
Micelas , Polímeros , Emulsões , Polieletrólitos , Água
10.
ACS Macro Lett ; 9(7): 1040-1045, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35648615

RESUMO

An original route to develop an advanced class of microgel emulsifiers containing stimulable metallo-supramolecular instead of frozen covalent cross-links is reported. The poly(N-isopropylmethacrylamide) (PNiPMAM) chains of the microgel are connected by iron(II)-bis(terpyridine) coordination supramolecular complexes that can be cleaved on demand, leading to unique properties both at interfaces and in volume. The microgel synthesis is not demanding, and the characterization of its supramolecular structure can be precisely achieved by standard methods. Singularly, interfaces of an oil-in-water emulsion stabilized by the supramolecular particles can be triggered at the molecular scale by oxidation of Fe(II) to Fe(III), leading to emulsion breaking. In bulk, we show that a microgel dispersion can indeed be transformed into a polymer solution upon oxidation. Our study paves the way to the discovery of unusual microgel properties as our proof-of-concept can be extended to different supramolecular chemistry and architecture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA