Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS Genet ; 18(6): e1009896, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653384

RESUMO

CCDC28B (coiled-coil domain-containing protein 28B) was identified as a modifier in the ciliopathy Bardet-Biedl syndrome (BBS). Our previous work in cells and zebrafish showed that CCDC28B plays a role regulating cilia length in a mechanism that is not completely understood. Here we report the generation of a Ccdc28b mutant mouse using CRISPR/Cas9 (Ccdc28b mut). Depletion of CCDC28B resulted in a mild phenotype. Ccdc28b mut animals i) do not present clear structural cilia affectation, although we did observe mild defects in cilia density and cilia length in some tissues, ii) reproduce normally, and iii) do not develop retinal degeneration or obesity, two hallmark features of reported BBS murine models. In contrast, Ccdc28b mut mice did show clear social interaction defects as well as stereotypical behaviors. This finding is indeed relevant regarding CCDC28B as a modifier of BBS since behavioral phenotypes have been documented in BBS. Overall, this work reports a novel mouse model that will be key to continue evaluating genetic interactions in BBS, deciphering the contribution of CCDC28B to modulate the presentation of BBS phenotypes. In addition, our data underscores a novel link between CCDC28B and behavioral defects, providing a novel opportunity to further our understanding of the genetic, cellular, and molecular basis of these complex phenotypes.


Assuntos
Síndrome de Bardet-Biedl , Degeneração Retiniana , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Cílios/metabolismo , Camundongos , Fenótipo , Degeneração Retiniana/genética , Peixe-Zebra/genética
2.
J Biol Chem ; 298(3): 101711, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150745

RESUMO

Acute and chronic inflammations are key homeostatic events in health and disease. Sirtuins (SIRTs), a family of NAD-dependent protein deacylases, play a pivotal role in the regulation of these inflammatory responses. Indeed, SIRTs have anti-inflammatory effects through a myriad of signaling cascades, including histone deacetylation and gene silencing, p65/RelA deacetylation and inactivation, and nucleotide­binding oligomerization domain, leucine rich repeat, and pyrin domain­containing protein 3 inflammasome inhibition. Nevertheless, recent findings show that SIRTs, specifically SIRT6, are also necessary for mounting an active inflammatory response in macrophages. SIRT6 has been shown to positively regulate tumor necrosis factor alpha (TNFα) secretion by demyristoylating pro-TNFα in the cytoplasm. However, how SIRT6, a nuclear chromatin-binding protein, fulfills this function in the cytoplasm is currently unknown. Herein, we show by Western blot and immunofluorescence that in macrophages and fibroblasts there is a subpopulation of SIRT6 that is highly unstable and quickly degraded via the proteasome. Upon lipopolysaccharide stimulation in Raw 264.7, bone marrow, and peritoneal macrophages, this population of SIRT6 is rapidly stabilized and localizes in the cytoplasm, specifically in the vicinity of the endoplasmic reticulum, promoting TNFα secretion. Furthermore, we also found that acute SIRT6 inhibition dampens TNFα secretion both in vitro and in vivo, decreasing lipopolysaccharide-induced septic shock. Finally, we tested SIRT6 relevance in systemic inflammation using an obesity-induced chronic inflammatory in vivo model, where TNFα plays a key role, and we show that short-term genetic deletion of SIRT6 in macrophages of obese mice ameliorated systemic inflammation and hyperglycemia, suggesting that SIRT6 plays an active role in inflammation-mediated glucose intolerance during obesity.


Assuntos
Inflamação , Macrófagos , Sirtuínas , Animais , Citoplasma/metabolismo , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Obesidade/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
Mol Cell Neurosci ; 123: 103781, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36122891

RESUMO

The protein DBC1 is the main SIRT1 regulator known so far, and by doing so, it is involved in the regulation of energy metabolism, especially in liver and fat adipose tissue. DBC1 also has an important function in cell cycle progression and regulation in cancer cells, affecting tumorigenesis. We recently showed that during quiescence, non-transformed cells need DBC1 in order to re-enter and progress through the cell cycle. Moreover, we showed that deletion of DBC1 affects cell cycle progression during liver regeneration. This novel concept prompted us to evaluate the role of DBC1 during adult neurogenesis, where transition from quiescence to proliferation in neuronal progenitors is key and tightly regulated. Herein, we analyzed several markers of cell cycle expressed in the dentate gyrus of the hippocampus of controls and DBC1 KO adult mice. Our results suggest a reduced number of neuroblasts therein present, probably due to a decline of neuroblast generation or an impairment in neural differentiation. In agreement with this, we also found that adult DBC1 KO mice had a reduction in the volume of the granule cell layer of the dentate gyrus. Interestingly, behavioral analysis of KO and control mice revealed that deletion of DBC1 parallels to specific cognitive impairments, concerning learning and possibly memory formation. Our results show, for the first time, that DBC1 plays an active role in the nervous system. In particular, specific anatomical and behavioral changes are observed when is absent.


Assuntos
Células-Tronco Neurais , Neurogênese , Camundongos , Animais , Camundongos Knockout , Neurogênese/fisiologia , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , Cognição/fisiologia , Giro Denteado , Camundongos Endogâmicos C57BL
4.
J Mol Cell Cardiol ; 166: 11-22, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35114253

RESUMO

CD38 enzymatic activity regulates NAD+ and cADPR levels in mammalian tissues, and therefore has a prominent role in cellular metabolism and calcium homeostasis. Consequently, it is reasonable to hypothesize about its involvement in cardiovascular physiology as well as in heart related pathological conditions. AIM: To investigate the role of CD38 in cardiovascular performance, and its involvement in cardiac electrophysiology and calcium-handling. METHODS AND RESULTS: When submitted to a treadmill exhaustion test, a way of evaluating cardiovascular performance, adult male CD38KO mice showed better exercise capacity. This benefit was also obtained in genetically modified mice with catalytically inactive (CI) CD38 and in WT mice treated with antibody 68 (Ab68) which blocks CD38 activity. Hearts from these 3 groups (CD38KO, CD38CI and Ab68) showed increased NAD+ levels. When CD38KO mice were treated with FK866 which inhibits NAD+ biosynthesis, exercise capacity as well as NAD+ in heart tissue decreased to WT levels. Electrocardiograms of conscious unrestrained CD38KO and CD38CI mice showed lower basal heart rates and higher heart rate variability than WT mice. Although inactivation of CD38 in mice resulted in increased SERCA2a expression in the heart, the frequency of spontaneous calcium release from the sarcoplasmic reticulum under stressful conditions (high extracellular calcium concentration) was lower in CD38KO ventricular myocytes. When mice were challenged with caffeine-epinephrine, CD38KO mice had a lower incidence of bidirectional ventricular tachycardia when compared to WT ones. CONCLUSION: CD38 inhibition improves exercise performance by regulating NAD+ homeostasis. CD38 is involved in cardiovascular function since its genetic ablation decreases basal heart rate, increases heart rate variability and alters calcium handling in a way that protects mice from developing catecholamine induced ventricular arrhythmias.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Cálcio , Glicoproteínas de Membrana/metabolismo , NAD , ADP-Ribosil Ciclase 1/genética , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Catecolaminas/metabolismo , Tolerância ao Exercício , Frequência Cardíaca , Masculino , Mamíferos/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , NAD/metabolismo
5.
J Biol Chem ; 295(52): 18355-18366, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33122195

RESUMO

Sirtuin 6, SIRT6, is critical for both glucose and lipid homeostasis and is involved in maintaining genomic stability under conditions of oxidative DNA damage such as those observed in age-related diseases. There is an intense search for modulators of SIRT6 activity, however, not many specific activators have been reported. Long acyl-chain fatty acids have been shown to increase the weak in vitro deacetylase activity of SIRT6 but this effect is modest at best. Herein we report that electrophilic nitro-fatty acids (nitro-oleic acid and nitro-conjugated linoleic acid) potently activate SIRT6. Binding of the nitro-fatty acid to the hydrophobic crevice of the SIRT6 active site exerted a moderate activation (2-fold at 20 µm), similar to that previously reported for non-nitrated fatty acids. However, covalent Michael adduct formation with Cys-18, a residue present at the N terminus of SIRT6 but absent from other isoforms, induced a conformational change that resulted in a much stronger activation (40-fold at 20 µm). Molecular modeling of the resulting Michael adduct suggested stabilization of the co-substrate and acyl-binding loops as a possible additional mechanism of SIRT6 activation by the nitro-fatty acid. Importantly, treatment of cells with nitro-oleic acid promoted H3K9 deacetylation, whereas oleic acid had no effect. Altogether, our results show that nitrated fatty acids can be considered a valuable tool for specific SIRT6 activation, and that SIRT6 should be considered as a molecular target for in vivo actions of these anti-inflammatory nitro-lipids.


Assuntos
Ácidos Graxos/farmacologia , Nitrocompostos/farmacologia , Sirtuínas/metabolismo , Acetilação , Humanos , Estresse Oxidativo , Conformação Proteica , Sirtuínas/química , Sirtuínas/genética
6.
Biochem J ; 476(17): 2463-2486, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31431479

RESUMO

Cellular senescence is an endpoint of chemotherapy, and targeted therapies in melanoma and the senescence-associated secretory phenotype (SASP) can affect tumor growth and microenvironment, influencing treatment outcomes. Metabolic interventions can modulate the SASP, and an enhanced mitochondrial energy metabolism supports resistance to therapy in melanoma cells. Herein, we assessed the mitochondrial function of therapy-induced senescent melanoma cells obtained after exposing the cells to temozolomide (TMZ), a methylating chemotherapeutic agent. Senescence induction in melanoma was accompanied by a substantial increase in mitochondrial basal, ATP-linked, and maximum respiration rates and in coupling efficiency, spare respiratory capacity, and respiratory control ratio. Further examinations revealed an increase in mitochondrial mass and length. Alterations in mitochondrial function and morphology were confirmed in isolated senescent cells, obtained by cell-size sorting. An increase in mitofusin 1 and 2 (MFN1 and 2) expression and levels was observed in senescent cells, pointing to alterations in mitochondrial fusion. Silencing mitofusin expression with short hairpin RNA (shRNA) prevented the increase in mitochondrial length, oxygen consumption rate and secretion of interleukin 6 (IL-6), a component of the SASP, in melanoma senescent cells. Our results represent the first in-depth study of mitochondrial function in therapy-induced senescence in melanoma. They indicate that senescence increases mitochondrial mass, length and energy metabolism; and highlight mitochondria as potential pharmacological targets to modulate senescence and the SASP.


Assuntos
Senescência Celular , Metabolismo Energético , GTP Fosfo-Hidrolases/metabolismo , Melanoma Experimental/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , GTP Fosfo-Hidrolases/genética , Inativação Gênica , Interleucina-6/genética , Interleucina-6/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Proteínas de Neoplasias/genética , Temozolomida/farmacologia
7.
J Biol Chem ; 289(9): 5518-27, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24415752

RESUMO

Liver gluconeogenesis is essential to provide energy to glycolytic tissues during fasting periods. However, aberrant up-regulation of this metabolic pathway contributes to the progression of glucose intolerance in individuals with diabetes. Phosphoenolpyruvate carboxykinase (PEPCK) expression plays a critical role in the modulation of gluconeogenesis. Several pathways contribute to the regulation of PEPCK, including the nuclear receptor Rev-erbα and the histone deacetylase SIRT1. Deleted in breast cancer 1 (DBC1) is a nuclear protein that binds to and regulates both Rev-erbα and SIRT1 and, therefore, is a candidate to participate in the regulation of PEPCK. In this work, we provide evidence that DBC1 regulates glucose metabolism and the expression of PEPCK. We show that DBC1 levels decrease early in the fasting state. Also, DBC1 KO mice display higher gluconeogenesis in a normal and a high-fat diet. DBC1 absence leads to an increase in PEPCK mRNA and protein expression. Conversely, overexpression of DBC1 results in a decrease in PEPCK mRNA and protein levels. DBC1 regulates the levels of Rev-erbα, and manipulation of Rev-erbα activity or levels prevents the effect of DBC1 on PEPCK. In addition, Rev-erbα levels decrease in the first hours of fasting. Finally, knockdown of the deacetylase SIRT1 eliminates the effect of DBC1 knockdown on Rev-erbα levels and PEPCK expression, suggesting that the mechanism of PEPCK regulation is, at least in part, dependent on the activity of this enzyme. Our results point to DBC1 as a novel regulator of gluconeogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Gluconeogênese/fisiologia , Glucose/biossíntese , Fígado/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Gorduras na Dieta/farmacologia , Jejum/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucose/genética , Células Hep G2 , Humanos , Fígado/citologia , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/biossíntese , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo
8.
J Biol Chem ; 288(24): 17745-58, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23589285

RESUMO

The function of Krüppel-like factor 11 (KLF11) in the regulation of metabolic pathways is conserved from flies to human. Alterations in KLF11 function result in maturity onset diabetes of the young 7 (MODY7) and neonatal diabetes; however, the mechanisms underlying the role of this protein in metabolic disorders remain unclear. Here, we investigated how the A347S genetic variant, present in MODY7 patients, modulates KLF11 transcriptional activity. A347S affects a previously identified transcriptional regulatory domain 3 (TRD3) for which co-regulators remain unknown. Structure-oriented sequence analyses described here predicted that the KLF11 TRD3 represents an evolutionarily conserved protein domain. Combined yeast two-hybrid and protein array experiments demonstrated that the TRD3 binds WD40, WWI, WWII, and SH3 domain-containing proteins. Using one of these proteins as a model, guanine nucleotide-binding protein ß2 (Gß2), we investigated the functional consequences of KLF11 coupling to a TRD3 binding partner. Combined immunoprecipitation and biomolecular fluorescence complementation assays confirmed that activation of three different metabolic G protein-coupled receptors (ß-adrenergic, secretin, and cholecystokinin) induces translocation of Gß2 to the nucleus where it directly binds KLF11 in a manner that is disrupted by the MODY7 A347S variant. Using genome-wide expression profiles, we identified metabolic gene networks impacted upon TRD3 disruption. Furthermore, A347S disrupted KLF11-mediated increases in basal insulin levels and promoter activity and blunted glucose-stimulated insulin secretion. Thus, this study characterizes a novel protein/protein interaction domain disrupted in a KLF gene variant that associates to MODY7, contributing to our understanding of gene regulation events in complex metabolic diseases.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Diabetes Mellitus Tipo 2/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteínas Repressoras/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Células CHO , Proteínas de Ciclo Celular/química , Sequência Conservada , Cricetinae , Evolução Molecular , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Glucose/fisiologia , Humanos , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Proteínas Repressoras/química , Transdução de Sinais , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
9.
Biochem J ; 451(3): 453-61, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23398316

RESUMO

The nuclear receptor Rev-erbα has been implicated as a major regulator of the circadian clock and integrates circadian rhythm and metabolism. Rev-erbα controls circadian oscillations of several clock genes and Rev-erbα protein degradation is important for maintenance of the circadian oscillations and also for adipocyte differentiation. Elucidating the mechanisms that regulate Rev-erbα stability is essential for our understanding of these processes. In the present paper, we report that the protein DBC1 (Deleted in Breast Cancer 1) is a novel regulator of Rev-erbα. Rev-erbα and DBC1 interact in cells and in vivo, and DBC1 modulates the Rev-erbα repressor function. Depletion of DBC1 by siRNA (small interfering RNA) in cells or in DBC1-KO (knockout) mice produced a marked decrease in Rev-erbα protein levels, but not in mRNA levels. In contrast, DBC1 overexpression significantly enhanced Rev-erbα protein stability by preventing its ubiquitination and degradation. The regulation of Rev-erbα protein levels and function by DBC1 depends on both the N-terminal and C-terminal domains of DBC1. More importantly, in cells depleted of DBC1, there was a dramatic decrease in circadian oscillations of both Rev-erbα and BMAL1. In summary, our data identify DBC1 as an important regulator of the circadian receptor Rev-erbα and proposes that Rev-erbα could be involved in mediating some of the physiological effects of DBC1.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , RNA Mensageiro/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Plasmídeos , Estabilidade Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Transfecção
10.
Sci Rep ; 14(1): 15085, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956222

RESUMO

Obesity poses significant challenges, necessitating comprehensive strategies for effective intervention. Bariatric Surgery (BS) has emerged as a crucial therapeutic approach, demonstrating success in weight loss and comorbidity improvement. This study aimed to evaluate the outcomes of BS in a cohort of 48 Uruguayan patients and investigate the interplay between BS and clinical and metabolic features, with a specific focus on FSTL1, an emerging biomarker associated with obesity and inflammation. We quantitatively analyzed BS outcomes and constructed linear models to identify variables impacting BS success. The study revealed the effectiveness of BS in improving metabolic and clinical parameters. Importantly, variables correlating with BS success were identified, with higher pre-surgical FSTL1 levels associated with an increased effect of BS on BMI reduction. FSTL1 levels were measured from patient plasma using an ELISA kit pre-surgery and six months after. This research, despite limitations of a small sample size and limited follow-up time, contributes valuable insights into understanding and predicting the success of BS, highlighting the potential role of FSTL1 as a useful biomarker in obesity.


Assuntos
Cirurgia Bariátrica , Biomarcadores , Proteínas Relacionadas à Folistatina , Obesidade , Humanos , Proteínas Relacionadas à Folistatina/sangue , Proteínas Relacionadas à Folistatina/metabolismo , Feminino , Masculino , Cirurgia Bariátrica/métodos , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Obesidade/cirurgia , Obesidade/metabolismo , Uruguai/epidemiologia , Estudos de Coortes , Redução de Peso , Resultado do Tratamento , Índice de Massa Corporal
11.
J Lipid Res ; 54(7): 1988-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23606725

RESUMO

Growth hormone (GH) acutely stimulates lipolysis and fat oxidation, a process that operates postabsorptively and involves activation of the JAK-STAT pathway in the target tissue; no in vivo data exist regarding subsequent GH-regulated gene transcription. We obtained serum samples and muscle biopsies in human subjects before and 2 h after administration of a GH bolus. A significant (~75%) elevation in serum FFA levels was recorded post GH. Microarray identified 79 GH-regulated genes in muscle. With qRT-PCR, we then examined the expression of selected genes in the presence and absence of glucose-induced suppression of lipolysis. Four genes involved in the JAK-STAT5 signaling pathway were regulated by GH, including SOCS1-3 and CISH, in addition to three genes associated with insulin action: NFκB1A, PIK3C2B, and PRKAG2. The gene encoding ANGPTL4, a protein involved in lipolysis and suppression of LPL activity, exhibited the most pronounced upregulation (5.6-fold) after GH, which was abrogated by concomitant suppression of lipolysis. Therefore, the GH-induced stimulation of ANGPTL4 gene expression seems secondary to induction of lipolysis. This new concept implies that abundant supply of circulating FFA decreases the need for alternative triglyceride-derived FFA through distinct inhibition of LPL mediated by increased ANGPTL4 gene expression in human muscle.


Assuntos
Angiopoietinas/metabolismo , Hormônio do Crescimento/administração & dosagem , Hormônio do Crescimento/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Administração Intravenosa , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/genética , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Reação em Cadeia da Polimerase em Tempo Real
12.
J Biol Chem ; 287(28): 23489-501, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22553202

RESUMO

The NAD(+)-dependent deacetylase SIRT1 is a key regulator of several aspects of metabolism and aging. SIRT1 activation is beneficial for several human diseases, including metabolic syndrome, diabetes, obesity, liver steatosis, and Alzheimer disease. We have recently shown that the protein deleted in breast cancer 1 (DBC1) is a key regulator of SIRT1 activity in vivo. Furthermore, SIRT1 and DBC1 form a dynamic complex that is regulated by the energetic state of the organism. Understanding how the interaction between SIRT1 and DBC1 is regulated is therefore essential to design strategies aimed to activate SIRT1. Here, we investigated which pathways can lead to the dissociation of SIRT1 and DBC1 and consequently to SIRT1 activation. We observed that PKA activation leads to a fast and transient activation of SIRT1 that is DBC1-dependent. In fact, an increase in cAMP/PKA activity resulted in the dissociation of SIRT1 and DBC1 in an AMP-activated protein kinase (AMPK)-dependent manner. Pharmacological AMPK activation led to SIRT1 activation by a DBC1-dependent mechanism. Indeed, we found that AMPK activators promote SIRT1-DBC1 dissociation in cells, resulting in an increase in SIRT1 activity. In addition, we observed that the SIRT1 activation promoted by PKA and AMPK occurs without changes in the intracellular levels of NAD(+). We propose that PKA and AMPK can acutely activate SIRT1 by inducing dissociation of SIRT1 from its endogenous inhibitor DBC1. Our experiments provide new insight on the in vivo mechanism of SIRT1 regulation and a new avenue for the development of pharmacological SIRT1 activators targeted at the dissociation of the SIRT1-DBC1 complex.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sirtuína 1/metabolismo , Acrilamidas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Carbazóis/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Mutação , NAD/metabolismo , Niacinamida/farmacologia , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Interferência de RNA , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Estilbenos/farmacologia
13.
Antioxid Redox Signal ; 39(16-18): 1185-1208, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37767625

RESUMO

Significance: Sirtuins are NAD+-dependent histone deacetylases regulating important processes in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis. Recent Advances: Despite initially being discovered to regulate transcription and life span via histone deacetylase activities, emerging data continually uncover new targets and propose additional roles. Due to the outstanding importance of the sirtuins in the control of the inflammatory response, their roles in the pathogenesis of several inflammatory-based diseases have become an area of intense research. Although sirtuins have been traditionally regarded as anti-inflammatory players, several recent findings suggest that their role in inflammation is complex and that in some cases sirtuins can indeed promote inflammation. Critical Issues: In this article, we provide an update on the latest findings concerning the new mechanisms of action and concepts about the role of sirtuins during inflammation. We focus on the impact that inflammatory-based processes exert on the liver, adipose tissue, and nervous system as well as on macrophage function and activation. Also, we discuss available data pointing to the dual role that, in particular contexts, sirtuins may have on inflammation control. Future Directions: Since the knowledge of sirtuin impact on metabolism is continually expanding, new venues of research arise. Besides become being regarded as candidates of therapeutic targets, posttranscriptional control of sirtuin expression by means of microRNAs challenges our traditional concepts of sirtuin regulation; importantly, the emerging role of NAD+ metabolism in aging and longevity has added a new dimension to the interest in sirtuin function. Antioxid. Redox Signal. 39, 1185-1208.


Assuntos
Sirtuínas , Humanos , Sirtuínas/metabolismo , NAD/metabolismo , Estresse Oxidativo , Envelhecimento/fisiologia , Inflamação
14.
Cell Rep ; 42(10): 113269, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37864797

RESUMO

Emerging evidence suggests that immune receptors may participate in many aging-related processes such as energy metabolism, inflammation, and cognitive decline. CD300f, a TREM2-like lipid-sensing immune receptor, is an exceptional receptor as it integrates activating and inhibitory cell-signaling pathways that modulate inflammation, efferocytosis, and microglial metabolic fitness. We hypothesize that CD300f can regulate systemic aging-related processes and ultimately healthy lifespan. We closely followed several cohorts of two strains of CD300f-/- and WT mice of both sexes for 30 months and observed an important reduction in lifespan and healthspan in knockout mice. This was associated with systemic inflammaging, increased cognitive decline, reduced brain glucose uptake observed by 18FDG PET scans, enrichment in microglial aging/neurodegeneration phenotypes, proteostasis alterations, senescence, increased frailty, and sex-dependent systemic metabolic changes. Moreover, the absence of CD300f altered macrophage immunometabolic phenotype. Taken together, we provide strong evidence suggesting that myeloid cell CD300f immune receptor contributes to healthy aging.


Assuntos
Disfunção Cognitiva , Envelhecimento Saudável , Masculino , Feminino , Camundongos , Animais , Macrófagos/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Camundongos Knockout , Disfunção Cognitiva/metabolismo
15.
Wound Repair Regen ; 20(1): 28-37, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22151796

RESUMO

Immediately after wounding, bovine corneal endothelial cells develop a fast calcium wave that propagates from the wound border to the rest of the monolayer and extinguishes in approximately 5 minutes. One hour after wounding, a late, slow calcium wave (SCW) develops concomitantly to the depolarization of the plasma membrane potential of the border cells. The incorporation of inhibitors of the epithelial sodium channel and of the sodium-calcium exchanger produces inhibition of the membrane depolarization and the SCW, and diminishes the rate of wound healing. The L-type calcium channel blocker nimodipine does not have any effect on the SCW. The reversible inhibition of the fast calcium wave does not affect the SCW and only slightly decreases the velocity of healing. Our results suggest that the SCW is at least partially produced by the coupling of the epithelial sodium channel and the sodium-calcium exchanger functioning in reverse mode. They also suggest that the SCW may play a role in the overall healing process.


Assuntos
Canais de Cálcio Tipo L/farmacologia , Sinalização do Cálcio , Córnea/patologia , Células Endoteliais/patologia , Cicatrização , Animais , Bovinos , Células Cultivadas , Córnea/citologia , Fatores de Crescimento Endotelial
16.
Bio Protoc ; 12(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36313196

RESUMO

The sirtuin 6 has emerged as a regulator of acute and chronic immune responses. Recent findings show that SIRT6 is necessary for mounting an active inflammatory response in macrophages. In vitro studies revealed that SIRT6 is stabilized in the cytoplasm to promote tumor necrosis factor (TNFα) secretion. Notably, SIRT6 also promotes TNFα secretion by resident peritoneal macrophages upon lipopolysaccharide (LPS) stimulation in vivo. Although many studies have investigated SIRT6 function in the immune response through different genetic and pharmacological approaches, direct measurements of in vivo SIRT6 expression in immune cells by flow cytometry have not yet been performed. Here, we describe a step-by-step protocol for peritoneal fluid extraction, isolation, and preparation of peritoneal cavity cells, intracellular SIRT6 staining, and flow cytometry analysis to measure SIRT6 levels in mice peritoneal macrophages. By providing a robust method to quantify SIRT6 levels in different populations of macrophages, this method will contribute to deepening our understanding of the role of SIRT6 in immunity, as well as in other cellular processes regulated by SIRT6. Graphical abstract.

17.
Physiol Rep ; 10(17): e15449, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36065875

RESUMO

Acute respiratory distress syndrome is associated with skeletal muscle compromise, which decreases survival and impairs functional capacity. A comparative analysis of peripheral and respiratory muscles' atrophy and dysfunction in acute lung injury (ALI) has not been performed. We aimed to evaluate diaphragmatic and peripheral muscle mass and contractility in an ALI animal model. ALI was induced in C57BL/6 mice by intratracheal lipopolysaccharides instillation. Muscle mass and in vitro contractility were evaluated at different time points in hindlimb soleus (slow-twitch) and extensor digitorum longus (EDL, fast-twitch), as well as in the main respiratory muscle diaphragm. Myogenic precursor satellite cell-specific transcription factor Pax7 expression was determined by Western blot. Lung injury was associated with atrophy of the three studied muscles, although it was more pronounced and persistent in the diaphragm. Specific contractility was reduced during lung injury in EDL muscle but restored by the time lung injury has resolved. Specific force was not affected in soleus and diaphragm. A persistent increase in Pax7 expression was detected in diaphragm and EDL muscles after induction of ALI, but not in soleus muscle. Different peripheral and respiratory skeletal muscles are distinctly affected during the course of ALI. Each of the studied muscles presented a unique pattern in terms of atrophy development, contractile dysfunction and Pax7 expression.


Assuntos
Lesão Pulmonar Aguda , Doenças Musculares , Lesão Pulmonar Aguda/metabolismo , Animais , Atrofia , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/fisiologia , Doenças Musculares/metabolismo , Músculos Respiratórios
18.
J Biol Chem ; 285(52): 40830-7, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-21030595

RESUMO

HDAC3 is a member of the class I histone deacetylase family that regulates gene expression by deacetylation of histones and non-histone proteins. HDAC3 activity has been shown to be modulated by interaction with the co-repressors NCoR and SMRT. Here, we present evidence that the nuclear protein DBC1 is an endogenous inhibitor of HDAC3. DBC1 has been previously identified as a regulator of some nuclear receptors, the methyltransferase SUV39H1, and the NAD-dependent deacetylase SIRT1. Furthermore, DBC1 has been shown to influence transcription regulation and apoptosis, and it may also act as a tumor suppressor. We found that DBC1 interacts and specifically inhibits the deacetylase HDAC3. This interaction depends on the N terminus of DBC1 and the C terminus of HDAC3. Expression of DBC1 not only inhibited HDAC3 activity but also altered its subcellular distribution. In addition, knockdown of endogenous DBC1 in cells and knock-out in mouse tissues increased HDAC3 deacetylase activity. Together, these results identify DBC1 as a new regulator of HDAC3 and demonstrate that DBC1 is a negative regulator of two key distinct deacetylases, SIRT1 and HDAC3. These findings may lead to a better understanding of the biological roles of DBC1 and HDAC3 in metabolic diseases and cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Histona Desacetilases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/genética , Células HEK293 , Histona Desacetilases/genética , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Transcrição Gênica
19.
Redox Biol ; 39: 101833, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352465

RESUMO

Chronic metabolic diseases, like obesity, type II diabetes and atherosclerosis often involve a low-grade and sterile systemic inflammatory state, in which activation of the pro-inflammatory transcription factor NF-kB and the NLRP3 inflammasome play a major role. It is well established that genetic inhibition of the NLRP3 inflammasome ameliorates acute and chronic inflammation. Indeed, accumulating experimental evidences in murine models and also in humans suggest that inhibition of the NLRP3 inflammasome might be a suitable approach to tackle the deleterious effects of chronic metabolic diseases. In this work, we explored our previously synthesized nitroalkene-Trolox™ derivative named NATx0, as a non-conventional anti-inflammatory strategy to treat chronic inflammatory diseases, such as obesity-induced glucose intolerance. We found that NATx0 inhibited NF-kB nuclear translocation and pro-inflammatory gene expression in macrophages in vitro. In addition, treatment with NATx0 prevented NLRP3 inflammasome activation after LPS/ATP stimulation in macrophages in vitro. When tested acutely in vivo, NATx0 inhibited neutrophil recruitment in zebrafish larvae, and also diminished IL-1ß production after LPS challenge in mice. Finally, when NATx0 was administered chronically to diet-induced obese mice, it decreased muscle tissue inflammation and glucose intolerance, leading to improved glucose homeostasis. In conclusion, we propose that this novel nitroalkene-Trolox derivative is a suitable tool to tackle acute and chronic inflammation in vitro and in vivo mainly due to inhibition of NF-kB/NLRP3 activation.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Animais , Intolerância à Glucose/tratamento farmacológico , Inflamassomos , Inflamação/tratamento farmacológico , Interleucina-1beta , Lipopolissacarídeos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Obesidade/tratamento farmacológico , Vitamina E , Peixe-Zebra
20.
Neurotherapeutics ; 18(1): 309-325, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33118131

RESUMO

Motor neuron degeneration and neuroinflammation are the most striking pathological features of amyotrophic lateral sclerosis (ALS). ALS currently has no cure and approved drugs have only a modest clinically therapeutic effect in patients. Drugs targeting different deleterious inflammatory pathways in ALS appear as promising therapeutic alternatives. Here, we have assessed the potential therapeutic effect of an electrophilic nitroalkene benzoic acid derivative, (E)-4-(2-nitrovinyl) benzoic acid (BANA), to slow down paralysis progression when administered after overt disease onset in SOD1G93A rats. BANA exerted a significant inhibition of NF-κB activation in NF-κB reporter transgenic mice and microglial cell cultures. Systemic daily oral administration of BANA to SOD1G93A rats after paralysis onset significantly decreased microgliosis and astrocytosis, and significantly reduced the number of NF-κB-p65-positive microglial nuclei surrounding spinal motor neurons. Numerous microglia bearing nuclear NF-κB-p65 were observed in the surrounding of motor neurons in autopsy spinal cords from ALS patients but not in controls, suggesting ALS-associated microglia could be targeted by BANA. In addition, BANA-treated SOD1G93A rats after paralysis onset showed significantly ameliorated spinal motor neuron pathology as well as conserved neuromuscular junction innervation in the skeletal muscle, as compared to controls. Notably, BANA prolonged post-paralysis survival by ~30%, compared to vehicle-treated littermates. These data provide a rationale to therapeutically slow paralysis progression in ALS using small electrophilic compounds such as BANA, through a mechanism involving microglial NF-κB inhibition.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Nitrobenzoatos/uso terapêutico , Esclerose Lateral Amiotrófica/mortalidade , Esclerose Lateral Amiotrófica/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células HT29/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Ratos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA