Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049562

RESUMO

Adipose tissue (AT) dysregulation is a key process in the pathophysiology of obesity and its cardiometabolic complications, but even if a growing body of evidence has been collected over recent decades, the underlying molecular basis of adiposopathy remains to be fully understood. In this context, mitochondria, the intracellular organelles that orchestrate energy production and undergo highly dynamic adaptive changes in response to changing environments, have emerged as crucial regulators of both white (WAT) and brown adipose tissue (BAT) metabolism and function. Given that the gut microbiota and its metabolites are able to regulate host metabolism, adipogenesis, WAT inflammation, and thermogenesis, we hypothesize that their frequently observed dysregulation in obesity could affect AT metabolism by exerting direct and indirect effects on AT mitochondria. By collecting and revising the current evidence on the connections between gut microbiota and AT mitochondria in obesity, we gained insights into the molecular biology of their hitherto largely unexplored crosstalk, tracing how gut microbiota may regulate AT mitochondrial function.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Mitocôndrias/metabolismo , Termogênese/fisiologia , Metabolismo Energético
2.
Infect Agent Cancer ; 18(1): 71, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37941001

RESUMO

BACKGROUND: Although the role of viral agents, such as human papillomavirus (e.g. HPV16, HPV18) in colorectal cancer (CRC) has been previously investigated, results remain inconclusive. METHODS: To further evaluate the involvement of oncogenic HPV types in CRC, 40 frozen neoplastic and 40 adjacent colonic tissues collected from Italian patients were analyzed by Luminex-based assays that detect a broad spectrum of HPV types, i.e. Alpha (n = 21), Beta (n = 46) and Gamma HPVs (n = 52). In addition, 125 frozen CRC samples and 70 surrounding mucosal tissues were collected from Czech patients and analyzed by broad spectrum PCR protocols: (i) FAP59/64, (ii) FAPM1 and (iii) CUT combined with Next Generation Sequencing (NGS). RESULTS: Using Luminex-basedassays, DNA from HPV16 was detected in 5% (2/40) CRC tissues from Italian patients. One HPV16 DNA-positive CRC case was subsequently confirmed positive for E6*I mRNA. Cutaneous beta HPV types were detected in 10% (4/40) adjacent tissues only, namely HPV111 (n = 3) and HPV120 (n = 1), while gamma HPV168 (n = 1) and HPV199 (n = 1) types were detected in adjacent and in tumor tissues, respectively. The NGS analysis of the CRC Czech samples identified HPV sequences from mucosal alpha-3 (HPV89), alpha-7 (HPV18, 39, 68 and 70) and alpha-10 species (HPV11), as well as cutaneous beta-1 (HPV20, 24, 93, 98, 105,124) beta-2 (HPV23), beta-3 (HPV49) and gamma-1 species (HPV205). CONCLUSIONS: Our findings indicate that HPV types belonging to the mucosal alpha, and the 'cutaneous' beta and gamma genera can be detected in the colonic mucosal samples with a low prevalence rate and a low number of HPV reads by Luminex and NGS, respectively. However, additional studies are required to corroborate these findings.

3.
Clin Epigenetics ; 14(1): 176, 2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36528638

RESUMO

BACKGROUND: Obesity is a multifactorial and chronic condition of growing universal concern. It has recently been reported that bariatric surgery is a more successful treatment for severe obesity than other noninvasive interventions, resulting in rapid significant weight loss and associated chronic disease remission. The identification of distinct epigenetic patterns in patients who are obese or have metabolic imbalances has suggested a potential role for epigenetic alterations in causal or mediating pathways in the development of obesity-related pathologies. Specific changes in the epigenome (DNA methylome), associated with metabolic disorders, can be detected in the blood. We investigated whether such epigenetic changes are reversible after weight loss using genome-wide DNA methylome analysis of blood samples from individuals with severe obesity (mean BMI ~ 45) undergoing bariatric surgery. RESULTS: Our analysis revealed 41 significant (Bonferroni p < 0.05) and 1169 (false discovery rate p < 0.05) suggestive differentially methylated positions (DMPs) associated with weight loss due to bariatric surgery. Among the 41 significant DMPs, 5 CpGs were replicated in an independent cohort of BMI-discordant monozygotic twins (the heavier twin underwent diet-induced weight loss). The effect sizes of these 5 CpGs were consistent across discovery and replication sets (p < 0.05). We also identified 192 differentially methylated regions (DMRs) among which SMAD6 and PFKFB3 genes were the top hypermethylated and hypomethylated regions, respectively. Pathway enrichment analysis of the DMR-associated genes showed that functional pathways related to immune function and type 1 diabetes were significant. Weight loss due to bariatric surgery also significantly decelerated epigenetic age 12 months after the intervention (mean = - 4.29; p = 0.02). CONCLUSIONS: We identified weight loss-associated DNA-methylation alterations targeting immune and inflammatory gene pathways in blood samples from bariatric-surgery patients. The top hits were replicated in samples from an independent cohort of BMI-discordant monozygotic twins following a hypocaloric diet. Energy restriction and bariatric surgery thus share CpGs that may represent early indicators of response to the metabolic effects of weight loss. The analysis of bariatric surgery-associated DMRs suggests that epigenetic regulation of genes involved in endothelial and adipose tissue function is key in the pathophysiology of obesity.


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Humanos , Lactente , Epigênese Genética , Metilação de DNA , Obesidade/genética , Obesidade/cirurgia , Obesidade Mórbida/genética , Dieta Redutora , Redução de Peso/genética , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA