Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 18(9): 1882-1896, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31985876

RESUMO

The generation of nitrogen fixing crops is considered a challenge that could lead to a new agricultural 'green' revolution. Here, we report the use of synthetic biology tools to achieve and optimize the production of active nitrogenase Fe protein (NifH) in the chloroplasts of tobacco plants. Azotobacter vinelandii nitrogen fixation genes, nifH, M, U and S, were re-designed for protein accumulation in tobacco cells. Targeting to the chloroplast was optimized by screening and identifying minimal length transit peptides performing properly for each specific Nif protein. Putative peptidyl-prolyl cis-trans isomerase NifM proved necessary for NifH solubility in the stroma. Purified NifU, a protein involved in the biogenesis of NifH [4Fe-4S] cluster, was found functional in NifH reconstitution assays. Importantly, NifH purified from tobacco chloroplasts was active in the reduction of acetylene to ethylene, with the requirement of nifU and nifS co-expression. These results support the suitability of chloroplasts to host functional nitrogenase proteins, paving the way for future studies in the engineering of nitrogen fixation in higher plant plastids and describing an optimization pipeline that could also be used in other organisms and in the engineering of new metabolic pathways in plastids.


Assuntos
Nicotiana , Biologia Sintética , Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Fixação de Nitrogênio , Nitrogenase/metabolismo , Oxirredutases , Folhas de Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
2.
Transgenic Res ; 29(1): 37-52, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31598902

RESUMO

Mitochondria fulfil essential functions in respiration and metabolism as well as regulating stress responses and apoptosis. Most native mitochondrial proteins are encoded by nuclear genes and are imported into mitochondria via one of several receptors that recognize N-terminal signal peptides. The targeting of recombinant proteins to mitochondria therefore requires the presence of an appropriate N-terminal peptide, but little is known about mitochondrial import in monocotyledonous plants such as rice (Oryza sativa). To gain insight into this phenomenon, we targeted nuclear-encoded enhanced green fluorescent protein (eGFP) to rice mitochondria using six mitochondrial pre-sequences with diverse phylogenetic origins, and investigated their effectiveness by immunoblot analysis as well as confocal and electron microscopy. We found that the ATPA and COX4 (Saccharomyces cerevisiae), SU9 (Neurospora crassa), pFA (Arabidopsis thaliana) and OsSCSb (Oryza sativa) peptides successfully directed most of the eGFP to the mitochondria, whereas the MTS2 peptide (Nicotiana plumbaginifolia) showed little or no evidence of targeting ability even though it is a native plant sequence. Our data therefore indicate that the presence of particular recognition motifs may be required for mitochondrial targeting, whereas the phylogenetic origin of the pre-sequences probably does not play a key role in the success of mitochondrial targeting in dedifferentiated rice callus and plants.


Assuntos
Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Oryza/metabolismo , Fragmentos de Peptídeos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/genética , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/genética , Oryza/genética , Fragmentos de Peptídeos/genética , Proteínas de Plantas/genética , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas Recombinantes/genética , Nicotiana/genética , Nicotiana/metabolismo
3.
mBio ; 13(3): e0026822, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35695456

RESUMO

Engineering plants to synthesize nitrogenase and assimilate atmospheric N2 will reduce crop dependency on industrial N fertilizers. This technology can be achieved by expressing prokaryotic nitrogen fixation gene products for the assembly of a functional nitrogenase in plants. NifB is a critical nitrogenase component since it catalyzes the first committed step in the biosynthesis of all types of nitrogenase active-site cofactors. Here, we used a library of 30 distinct nifB sequences originating from different phyla and ecological niches to restore diazotrophic growth of an Azotobacter vinelandii nifB mutant. Twenty of these variants rescued the nifB mutant phenotype despite their phylogenetic distance to A. vinelandii. Because multiple protein interactions are required in the iron-molybdenum cofactor (FeMo-co) biosynthetic pathway, the maturation of nitrogenase in a heterologous host can be divided in independent modules containing interacting proteins that function together to produce a specific intermediate. Therefore, nifB functional modules composed of a nifB variant, together with the A. vinelandii NifS and NifU proteins (for biosynthesis of NifB [Fe4S4] clusters) and the FdxN ferredoxin (for NifB function), were expressed in Nicotiana benthamiana chloroplasts and mitochondria. Three archaeal NifB proteins accumulated at high levels in soluble fractions of chloroplasts (Methanosarcina acetivorans and Methanocaldococcus infernus) or mitochondria (M. infernus and Methanothermobacter thermautotrophicus). These NifB proteins were shown to accept [Fe4S4] clusters from NifU and were functional in FeMo-co synthesis in vitro. The accumulation of significant levels of soluble and functional NifB proteins in chloroplasts and mitochondria is critical to engineering biological nitrogen fixation in plants. IMPORTANCE Biological nitrogen fixation is the conversion of inert atmospheric dinitrogen gas into nitrogen-reactive ammonia, a reaction catalyzed by the nitrogenase enzyme of diazotrophic bacteria and archaea. Because plants cannot fix their own nitrogen, introducing functional nitrogenase in cereals and other crop plants would reduce our strong dependency on N fertilizers. NifB is required for the biosynthesis of the active site cofactors of all nitrogenases, which arguably makes it the most important protein in global nitrogen fixation. NifB functionality is therefore a requisite to engineer a plant nitrogenase. The expression of nifB genes from a wide range of prokaryotes into the model diazotroph Azotobacter vinelandii shows a surprising level of genetic complementation suggestive of plasticity in the nitrogenase biosynthetic pathway. In addition, we obtained NifB proteins from both mitochondria and chloroplasts of tobacco that are functional in vitro after reconstitution by providing [Fe4S4] clusters from NifU, paving the way to nitrogenase cofactor biosynthesis in plants.


Assuntos
Proteínas Arqueais , Azotobacter vinelandii , Compostos de Ferro/metabolismo , Proteínas Arqueais/genética , Azotobacter vinelandii/genética , Proteínas de Bactérias/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fertilizantes , Mitocôndrias/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Nitrogenase/genética , Nitrogenase/metabolismo , Filogenia , Nicotiana/genética , Nicotiana/metabolismo
4.
Commun Biol ; 4(1): 4, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398015

RESUMO

Engineering nitrogen fixation in eukaryotes requires high expression of functional nitrogenase structural proteins, a goal that has not yet been achieved. Here we build a knowledge-based library containing 32 nitrogenase nifH sequences from prokaryotes of diverse ecological niches and metabolic features and combine with rapid screening in tobacco to identify superior NifH variants for plant mitochondria expression. Three NifH variants outperform in tobacco mitochondria and are further tested in yeast. Hydrogenobacter thermophilus (Aquificae) NifH is isolated in large quantities from yeast mitochondria and fulfills NifH protein requirements for efficient N2 fixation, including electron transfer for substrate reduction, P-cluster maturation, and FeMo-co biosynthesis. H. thermophilus NifH expressed in tobacco leaves shows lower nitrogenase activity than that from yeast. However, transfer of [Fe4S4] clusters from NifU to NifH in vitro increases 10-fold the activity of the tobacco-isolated NifH, revealing that plant mitochondria [Fe-S] cluster availability constitutes a bottleneck to engineer plant nitrogenases.


Assuntos
Bactérias/enzimologia , Engenharia Genética/métodos , Fixação de Nitrogênio/genética , Nitrogenase/genética , Biblioteca Gênica , Ferro/metabolismo , Mitocôndrias/enzimologia , Nitrogenase/isolamento & purificação , Nitrogenase/metabolismo , Saccharomyces cerevisiae/enzimologia , Nicotiana/metabolismo
5.
Front Plant Sci ; 11: 560701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101328

RESUMO

Nucleus-encoded plastid proteins are synthesized as precursors with N-terminal targeting signals called transit peptides (TPs), which mediate interactions with the translocon complexes at the outer (TOC) and inner (TIC) plastid membranes. These complexes exist in multiple isoforms in higher plants and show differential specificity and tissue abundance. While some show specificity for photosynthesis-related precursor proteins, others distinctly recognize nonphotosynthetic and housekeeping precursor proteins. Here we used TPs from four Arabidopsis thaliana proteins, three related to photosynthesis (chlorophyll a/b binding protein, Rubisco activase) and photo-protection (tocopherol cyclase) and one involved in the assimilation of ammonium into amino-acids, and whose expression is most abundant in the root (ferredoxin dependent glutamate synthase 2), to determine whether they were able to mediate import of a nuclear-encoded marker protein into plastids of different tissues of a dicot and a monocot species. In A. thaliana, import and processing efficiency was high in all cases, while TP from the rice Rubisco small chain 1, drove very low import in Arabidopsis tissues. Noteworthy, our results show that Arabidopsis photosynthesis TPs also mediate plastid import in rice callus, and in leaf and root tissues with almost a 100% efficiency, providing new biotechnological tools for crop improvement strategies based on recombinant protein accumulation in plastids by the expression of nuclear-encoded transgenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA