Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(18): 9952-9963, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32345717

RESUMO

Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have developed an HtrA1-blocking Fab fragment to test the therapeutic hypothesis that HtrA1 protease activity is involved in the progression of AMD. Next, we generated an activity-based small-molecule probe (ABP) to track target engagement in vivo. In addition, we used N-terminomic proteomic profiling in preclinical models to elucidate the in vivo repertoire of HtrA1-specific substrates, and identified substrates that can serve as robust pharmacodynamic biomarkers of HtrA1 activity. One of these HtrA1 substrates, Dickkopf-related protein 3 (DKK3), was successfully used as a biomarker to demonstrate the inhibition of HtrA1 activity in patients with AMD who were treated with the HtrA1-blocking Fab fragment. This pharmacodynamic biomarker provides important information on HtrA1 activity and pharmacological inhibition within the ocular compartment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Anticorpos Anti-Idiotípicos/farmacologia , Atrofia Geográfica/tratamento farmacológico , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Degeneração Macular/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Idoso , Animais , Anticorpos Anti-Idiotípicos/genética , Anticorpos Anti-Idiotípicos/imunologia , Biomarcadores/sangue , Progressão da Doença , Feminino , Predisposição Genética para Doença , Genótipo , Atrofia Geográfica/sangue , Atrofia Geográfica/genética , Atrofia Geográfica/imunologia , Serina Peptidase 1 de Requerimento de Alta Temperatura A/antagonistas & inibidores , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Degeneração Macular/sangue , Degeneração Macular/genética , Degeneração Macular/imunologia , Masculino , Polimorfismo de Nucleotídeo Único/genética , Proteoma/genética , Proteoma/imunologia , Ratos , Retina/efeitos dos fármacos , Retina/imunologia , Retina/patologia , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Anal Chem ; 90(10): 6292-6299, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29671580

RESUMO

Most serum proteins are N-linked glycosylated, and therefore the glycoproteomic profiling of serum is essential for characterization of serum proteins. In this study, we profiled serum N-glycoproteome by our recently developed N-glycoproteomic method using solid-phase extraction of N-linked glycans and glycosite-containing peptides (NGAG) coupled with LC-MS/MS and site-specific glycosylation analysis using GPQuest software. Our data indicated that half of identified N-glycosites were modified by at least two glycans, with a majority of them being sialylated. Specifically, 3/4 of glycosites were modified by biantennary N-glycans and 1/3 of glycosites were modified by triantennary sialylated N-glycans. In addition, two novel atypical glycosites (with N-X-V motif) were identified and validated from albumin and α-1B-glycoprotein. The widespread presence of these two glycosites among individuals was further confirmed by individual serum analyses.


Assuntos
Albuminas/química , Glicoproteínas/sangue , Peptídeos/análise , Polissacarídeos/análise , Glicosilação , Humanos
3.
Proteomics ; 16(2): 241-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26390280

RESUMO

Over the past decade, considerable progress has been made with respect to the analytical methods for analysis of glycans from biological sources. Regardless of the specific methods that are used, glycan analysis includes isolation, identification, and quantitation. Derivatization is indispensable to increase their identification. Derivatization of glycans can be performed by permethylation or carbodiimide coupling/esterification. By introducing a fluorophore or chromophore at their reducing end, glycans can be separated by electrophoresis or chromatography. The fluorogenically labeled glycans can be quantitated using fluorescent detection. The recently developed approaches using solid-phase such as glycoprotein immobilization for glycan extraction and on-tissue glycan mass spectrometry imaging demonstrate advantages over methods performed in solution. Derivatization of sialic acids is favorably implemented on the solid support using carbodiimide coupling, and the released glycans can be further modified at the reducing end or permethylated for quantitative analysis. In this review, methods for glycan isolation, identification, and quantitation are discussed.


Assuntos
Glicômica/métodos , Polissacarídeos/isolamento & purificação , Amidoidrolases/química , Animais , Sequência de Carboidratos , Cromatografia Líquida , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Glicosilação , Humanos , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Análise de Sequência
4.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333091

RESUMO

Ulcerative colitis (UC) is an idiopathic chronic inflammatory disease of the colon with sharply rising global prevalence. Dysfunctional epithelial compartment (EC) dynamics are implicated in UC pathogenesis although EC-specific studies are sparse. Applying orthogonal high-dimensional EC profiling to a Primary Cohort (PC; n=222), we detail major epithelial and immune cell perturbations in active UC. Prominently, reduced frequencies of mature BEST4+OTOP2+ absorptive and BEST2+WFDC2+ secretory epithelial enterocytes were associated with the replacement of homeostatic, resident TRDC+KLRD1+HOPX+ γδ+ T cells with RORA+CCL20+S100A4+ TH17 cells and the influx of inflammatory myeloid cells. The EC transcriptome (exemplified by S100A8, HIF1A, TREM1, CXCR1) correlated with clinical, endoscopic, and histological severity of UC in an independent validation cohort (n=649). Furthermore, therapeutic relevance of the observed cellular and transcriptomic changes was investigated in 3 additional published UC cohorts (n=23, 48 and 204 respectively) to reveal that non-response to anti-Tumor Necrosis Factor (anti-TNF) therapy was associated with EC related myeloid cell perturbations. Altogether, these data provide high resolution mapping of the EC to facilitate therapeutic decision-making and personalization of therapy in patients with UC.

5.
Nat Biotechnol ; 34(1): 84-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26571101

RESUMO

Comprehensive characterization of protein glycosylation is critical for understanding the structure and function of glycoproteins. However, due to the complexity and heterogeneity of glycoprotein conformations, current glycoprotein analyses focus mainly on either the de-glycosylated glycosylation site (glycosite)-containing peptides or the released glycans. Here, we describe a chemoenzymatic method called solid phase extraction of N-linked glycans and glycosite-containing peptides (NGAG) for the comprehensive characterization of glycoproteins that is able to determine glycan heterogeneity for individual glycosites in addition to providing information about the total N-linked glycan, glycosite-containing peptide and glycoprotein content of complex samples. The NGAG method can also be applied to quantitatively detect glycoprotein alterations in total and site-specific glycan occupancies.


Assuntos
Peptídeos/isolamento & purificação , Polissacarídeos/isolamento & purificação , Proteínas/metabolismo , Microextração em Fase Sólida , Glicosilação , Peptídeos/metabolismo , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA