Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 578(7794): 278-283, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025033

RESUMO

The biology of haematopoietic stem cells (HSCs) has predominantly been studied under transplantation conditions1,2. It has been particularly challenging to study dynamic HSC behaviour, given that the visualization of HSCs in the native niche in live animals has not, to our knowledge, been achieved. Here we describe a dual genetic strategy in mice that restricts reporter labelling to a subset of the most quiescent long-term HSCs (LT-HSCs) and that is compatible with current intravital imaging approaches in the calvarial bone marrow3-5. We show that this subset of LT-HSCs resides close to both sinusoidal blood vessels and the endosteal surface. By contrast, multipotent progenitor cells (MPPs) show greater variation in distance from the endosteum and are more likely to be associated with transition zone vessels. LT-HSCs are not found in bone marrow niches with the deepest hypoxia and instead are found in hypoxic environments similar to those of MPPs. In vivo time-lapse imaging revealed that LT-HSCs at steady-state show limited motility. Activated LT-HSCs show heterogeneous responses, with some cells becoming highly motile and a fraction of HSCs expanding clonally within spatially restricted domains. These domains have defined characteristics, as HSC expansion is found almost exclusively in a subset of bone marrow cavities with bone-remodelling activity. By contrast, cavities with low bone-resorbing activity do not harbour expanding HSCs. These findings point to previously unknown heterogeneity within the bone marrow microenvironment, imposed by the stages of bone turnover. Our approach enables the direct visualization of HSC behaviours and dissection of heterogeneity in HSC niches.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Imagem Molecular , Animais , Remodelação Óssea , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Genes Reporter , Hipóxia/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Masculino , Camundongos , Oxigênio/metabolismo , Crânio/citologia , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
2.
Inorg Chem ; 63(26): 11944-11952, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900061

RESUMO

Benzo-fused dipyrrins are π-extended analogs of conventional dipyrrins, which exhibit bathochromically shifted absorption and possess the synthetic capability to bind various metal ions. We aimed to investigate the synthetic potential of benzo-fused dipyrrins in the complexation with transition metals. Two new complexes with Pd2+ and Pt2+ were synthesized and characterized. X-ray crystallography reveals that both complexes exhibit a zigzag geometry with square planar coordination of the central metal. The Pd2+ complex possesses a very weak fluorescence at 665 nm, while the Pt2+ complex is completely nonemissive. Transient absorption spectroscopy confirmed triplet excited state formation for both complexes; however, they are short-lived and no phosphorescence was observed even at 77K. DFT calculations support the experimental observation, revealing the existence of the low-lying ligand-metal charge-transfer (LMCT) triplet state acting as an energy sink.

3.
Proc Natl Acad Sci U S A ; 115(16): 4170-4175, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610310

RESUMO

The succession from aerobic and facultative anaerobic bacteria to obligate anaerobes in the infant gut along with the differences between the compositions of the mucosally adherent vs. luminal microbiota suggests that the gut microbes consume oxygen, which diffuses into the lumen from the intestinal tissue, maintaining the lumen in a deeply anaerobic state. Remarkably, measurements of luminal oxygen levels show nearly identical pO2 (partial pressure of oxygen) profiles in conventional and germ-free mice, pointing to the existence of oxygen consumption mechanisms other than microbial respiration. In vitro experiments confirmed that the luminal contents of germ-free mice are able to chemically consume oxygen (e.g., via lipid oxidation reactions), although at rates significantly lower than those observed in the case of conventionally housed mice. For conventional mice, we also show that the taxonomic composition of the gut microbiota adherent to the gut mucosa and in the lumen throughout the length of the gut correlates with oxygen levels. At the same time, an increase in the biomass of the gut microbiota provides an explanation for the reduction of luminal oxygen in the distal vs. proximal gut. These results demonstrate how oxygen from the mammalian host is used by the gut microbiota, while both the microbes and the oxidative chemical reactions regulate luminal oxygen levels, shaping the composition of the microbial community throughout different regions of the gut.


Assuntos
Anaerobiose , Bactérias Anaeróbias/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Oxigênio/metabolismo , Animais , Bactérias Anaeróbias/isolamento & purificação , Sistemas Computacionais , Mucosa Gástrica/metabolismo , Conteúdo Gastrointestinal/química , Vida Livre de Germes , Lipídeos/química , Medições Luminescentes , Metaloporfirinas/análise , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Oxigênio/análise , Consumo de Oxigênio , Proteínas/química
4.
J Phys Chem A ; 124(52): 11038-11050, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33337890

RESUMO

Recent advances in laser technology have made three-photon (3P) microscopy a real possibility, raising interest in the phenomenon of 3P absorption (3PA). Understanding 3PA of organic chromophores is especially important in view of those imaging applications that rely on exogenous probes, whose optical properties can be manipulated and optimized. Here, we present measurements and theoretical analysis of the degenerate 3PA spectra of several phosphorescent metalloporphyrins, which are used in the construction of biological oxygen probes. The effective 3PA cross sections (σ(3)) of these porphyrins near 1700 nm, a new promising biological optical window, were found to be on the order of 1000 GM3 (1 GM3 = 10-83 cm6 s2), therefore being among the highest values reported to date for organic chromophores. To interpret our data, we developed a qualitative four-state model specific for porphyrins and used it in conjunction with quantitative analysis based on the time-dependent density functional theory (TDDFT)/a posteriori Tamm-Dancoff approximation (ATDA)/sum-over-states (SOS) formalism. The analysis revealed that B (Soret) state plays a key role in the enhancement of 3PA of porphyrins in the Q band region, while the low-lying two-photon (2P)-allowed gerade states interfere negatively and diminish the 3PA strength. This study features the first systematic examination of 3PA properties of porphyrins, suggesting ways to improve their performance and optimize them for imaging and other biomedical applications.


Assuntos
Espectroscopia Fotoeletrônica/métodos , Porfirinas/química , Lasers , Modelos Moleculares , Estrutura Molecular
5.
Photochem Photobiol Sci ; 18(9): 2142-2149, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31011734

RESUMO

Silica nanoparticles (NPs) are versatile nanomaterials, which are safe with respect to biomedical applications, and therefore are highly investigated. The advantages of NPs include their ease of preparation, inexpensive starting materials and the possibility of functionalization or loading with various doping agents. However, the solubility of the doping agent(s) imposes constraints on the choice of the reaction system and hence limits the range of molecules that can be included in the interior of NPs. To overcome this problem, herein, we improved the current state of the art synthetic strategy based on Pluronic F127 by enabling the synthesis in the presence of large amounts of organic solvents. The new method enables the preparation of nanoparticles doped with large amounts of water-insoluble doping agents. To illustrate the applicability of the technology, we successfully incorporated a range of phosphorescent metalloporphyrins into the interior of NPs. The resulting phosphorescent nanoparticles may exhibit potential for biological oxygen sensing.

6.
J Phys Chem A ; 121(33): 6243-6255, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28766943

RESUMO

Using time-dependent density functional theory (TDDFT) and sum-overstates (SOS) formalism, we predicted significant stabilization of 2P-active g-states in a compact fully symmetric porphyrin, in which all four pyrrolic fragments are fused with phathalimide residues via the ß-carbon positions. The synthesis of a soluble, nonaggregating meso-unsubstituted tetraarylphthalimidoporphyrin (TAPIP) was then developed, and the spectroscopic measurements confirmed that a strongly 2P-active state in this porphyrin is stabilized below the B (Soret) state level. Single-crystal X-ray analysis revealed near-ideally planar geometry of the TAPIP macrocycle, while its tetra-meso-arylated analogue (meso-Ar4TAPIP) was found to be highly saddled. Consistent with these structural features, Pt meso-Ar4TAPIP phosphoresces rather weakly (ϕphos = 0.05 in DMF at 22 °C), while both Pt and Pd complexes of TAPIP are highly phosphorescent (ϕphos = 0.45 and 0.23, respectively). In addition PdTAPIP exhibits non-negligible thermally activated (E-type) delayed fluorescence (ϕfl(d) ∼ 0.012). Taken together, these photophysical properties make metal complexes of meso-unsubstituted tetaarylphthalimidoporphyrins the brightest 2P-absorbing phosphorescent chromophores known to date.

7.
J Am Chem Soc ; 138(48): 15648-15662, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934026

RESUMO

The ability to form triplet excited states upon two-photon excitation is important for several applications of metalloporphyrins, including two-photon phosphorescence lifetime microscopy (2PLM) and two-photon photodynamic therapy (PDT). Here we analyzed one-photon (1P) and degenerate two-photon (2P) absorption properties of several phosphorescent Pt (II) porphyrins, focusing on the effects of aromatic π-extension and peripheral substitution on triplet emissivity and two-photon absorption (2PA). Our 2PA measurements for the first time made use of direct time-resolved detection of phosphorescence, having the ability to efficiently reject laser background through microsecond time gating. π-Extension of the porphyrin macrocycle by way of syn-fusion with two external aromatic fragments, such as in syn-dibenzo- (DBP) and syn-dinaphthoporphyrins (DNP), lowers the symmetry of the porphyrin skeleton. As a result, DBPs and DNPs exhibit stronger 2PA into the one-photon-allowed B (Soret) and Q states than fully symmetric (D4h) nonextended porphyrins. However, much more 2P-active states lie above the B state and cannot be accessed due to the interfering linear absorption. Alkoxycarbonyl groups (CO2R) in the benzo-rings dramatically enhance 2PA near the B state level. Time-dependent density functional theory (TDDFT) calculations in combinations with the sum-over-states (SOS) formalism revealed that the enhancement is due to the stabilization of higher-lying 2P-active states, which are dominated by the excitations involving orbitals extending onto the carbonyl groups. Furthermore, calculations predicted even stronger stabilization of the 2P-allowed gerade-states in symmetric Pt octaalkoxycarbonyl-tetrabenzoporphyrins. Experiments confirmed that the 2PA cross-section of PtTBP(CO2Bu)8 near 810 nm reaches above 500 GM in spite of its completely centrosymmetric structure. Combined with exceptionally bright phosphorescence (ϕphos = 0.45), strong 2PA makes Pt(II) complexes of π-extended porphyrins a valuable class of chromophores for 2P applications. Another important advantage of these porphyrinoids is their compact size and easily scalable synthesis.


Assuntos
Substâncias Luminescentes/química , Metaloporfirinas/química , Fótons , Teoria Quântica , Medições Luminescentes
8.
Gastroenterology ; 147(5): 1055-63.e8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25046162

RESUMO

BACKGROUND & AIMS: The gut microbiota is a complex and densely populated community in a dynamic environment determined by host physiology. We investigated how intestinal oxygen levels affect the composition of the fecal and mucosally adherent microbiota. METHODS: We used the phosphorescence quenching method and a specially designed intraluminal oxygen probe to dynamically quantify gut luminal oxygen levels in mice. 16S ribosomal RNA gene sequencing was used to characterize the microbiota in intestines of mice exposed to hyperbaric oxygen, human rectal biopsy and mucosal swab samples, and paired human stool samples. RESULTS: Average Po2 values in the lumen of the cecum were extremely low (<1 mm Hg). In altering oxygenation of mouse intestines, we observed that oxygen diffused from intestinal tissue and established a radial gradient that extended from the tissue interface into the lumen. Increasing tissue oxygenation with hyperbaric oxygen altered the composition of the gut microbiota in mice. In human beings, 16S ribosomal RNA gene analyses showed an increased proportion of oxygen-tolerant organisms of the Proteobacteria and Actinobacteria phyla associated with rectal mucosa, compared with feces. A consortium of asaccharolytic bacteria of the Firmicute and Bacteroidetes phyla, which primarily metabolize peptones and amino acids, was associated primarily with mucus. This could be owing to the presence of proteinaceous substrates provided by mucus and the shedding of the intestinal epithelium. CONCLUSIONS: In an analysis of intestinal microbiota of mice and human beings, we observed a radial gradient of microbes linked to the distribution of oxygen and nutrients provided by host tissue.


Assuntos
Bactérias/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Microbiota , Oxigênio/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Metabolismo dos Carboidratos/genética , Criança , Pré-Escolar , Difusão , Fezes/química , Fezes/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Oxigenoterapia Hiperbárica , Mucosa Intestinal/microbiologia , Camundongos Endogâmicos C57BL , Oximetria , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ribotipagem
9.
Opt Lett ; 40(5): 827-30, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25723443

RESUMO

Ionizing radiation is commonly delivered by medical linear accelerators (LINAC) in the form of shaped beams, and it is able to induce Cherenkov emission in tissue. In fluorescence-based microscopy excitation from scanned spots, lines, or sheets can be used for fast high-resolution imaging. Here we introduce Cherenkov-excited luminescence scanned imaging (CELSI) as a new imaging methodology utilizing 2-dimensional (∼5-mm-thick) sheets of LINAC radiation to produce Cherenkov photons, which in turn excite luminescence of probes distributed in biological tissues. Imaging experiments were performed by scanning these excitation sheets in three orthogonal directions while recording Cherenkov-excited luminescence. Tissue phantom studies have shown that single luminescent inclusions ∼1 mm in diameter can be imaged within 20-mm-thick tissue-like media with minimal loss of spatial resolution. Using a phosphorescent probe for oxygen, PtG4 with the CELSI methodology, an image of partial pressure of oxygen (pO2) was imaged in a rat lymph node, quantitatively restoring pO2 values in differently oxygenated tissues.


Assuntos
Luminescência , Imagem Óptica/métodos , Animais , Imagem Óptica/instrumentação , Aceleradores de Partículas , Imagens de Fantasmas , Fótons , Ratos
10.
Proc Natl Acad Sci U S A ; 109(51): 20826-31, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213211

RESUMO

We report a group of optical imaging probes, comprising upconverting lanthanide nanoparticles (UCNPs) and polyanionic dendrimers. Dendrimers with rigid cores and multiple carboxylate groups at the periphery are able to tightly bind to surfaces of UCNPs pretreated with NOBF(4), yielding stable, water-soluble, biocompatible nanomaterials. Unlike conventional linear polymers, dendrimers adhere to UCNPs by donating only a fraction of their peripheral groups to the UCNP-surface interactions. The remaining termini make up an interface between the nanoparticle and the aqueous phase, enhancing solubility and offering multiple possibilities for subsequent modification. Using optical probes as dendrimer cores makes it possible to couple the UCNPs signal to analyte-sensitive detection via UCNP-to-chromophore excitation energy transfer (EET). As an example, we demonstrate that UCNPs modified with porphyrin-dendrimers can operate as upconverting ratiometric pH nanosensors. Dendritic UCNPs possess excellent photostability, solubility, and biocompatibility, which make them directly suitable for in vivo imaging. Polyglutamic dendritic UCNPs injected in the blood of a mouse allowed mapping of the cortical vasculature down to 400 µm under the tissue surface, thus demonstrating feasibility of in vivo high-resolution two-photon microscopy with continuous wave (CW) excitation sources. Dendrimerization as a method of solubilization of UCNPs opens up numerous possibilities for use of these unique agents in biological imaging and sensing.


Assuntos
Dendritos/fisiologia , Microscopia/métodos , Nanopartículas/química , Animais , Ânions , Materiais Biocompatíveis/química , Técnicas Biossensoriais , Meios de Contraste/farmacologia , Concentração de Íons de Hidrogênio , Ligantes , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Modelos Químicos , Nanotecnologia/métodos , Peptídeos/química , Polímeros/química , Porfirinas/química , Solubilidade
11.
J Org Chem ; 79(18): 8812-25, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25157580

RESUMO

Significant effort has been directed in recent years toward porphyrins with enhanced two-photon absorption (2PA). However, the properties of their triplet states, which are central to many applications, have rarely been examined in parallel. Here we report the synthesis of asymmetrically π-extended platinum(II) and palladium(II) porphyrins, whose 2PA into single-photon-absorbing states is enhanced as a result of the broken center-of-inversion symmetry and whose triplet states can be monitored by room-temperature phosphorescence. 5,15-Diaryl-syn-dibenzoporphyrins (DBPs) and syn-dinaphthoporphyrins (DNPs) were synthesized by [2 + 2] condensation of the corresponding dipyrromethanes and subsequent oxidative aromatization. Butoxycarbonyl groups on the meso-aryl rings render these porphyrins well-soluble in a range of organic solvents, while 5,15-meso-aryl substitution causes minimal nonplanar distortion of the macrocycle, ensuring high triplet emissivity. A syn-DBP bearing four alkoxycarbonyl groups in the benzo rings and possessing a large static dipole moment was also synthesized. Photophysical properties (2PA brightness and phosphorescence quantum yields and lifetimes) of the new porphyrins were measured, and their ground-state structures were determined by DFT calculations and/or X-ray analysis. The developed synthetic methods should facilitate the construction of π-extended porphyrins for applications requiring high two-photon triplet action cross sections.


Assuntos
Metaloporfirinas/química , Paládio/química , Platina/química , Porfirinas/química , Cristalografia por Raios X , Medições Luminescentes , Processos Fotoquímicos , Fótons , Piridinas/química , Teoria Quântica
12.
Biochem Soc Trans ; 40(3): 561-6, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22616867

RESUMO

The study of natural enzymes is complicated by the fact that only the most recent evolutionary progression can be observed. In particular, natural oxidoreductases stand out as profoundly complex proteins in which the molecular roots of function, structure and biological integration are collectively intertwined and individually obscured. In the present paper, we describe our experimental approach that removes many of these often bewildering complexities to identify in simple terms the necessary and sufficient requirements for oxidoreductase function. Ours is a synthetic biology approach that focuses on from-scratch construction of protein maquettes designed principally to promote or suppress biologically relevant oxidations and reductions. The approach avoids mimicry and divorces the commonly made and almost certainly false ascription of atomistically detailed functionally unique roles to a particular protein primary sequence, to gain a new freedom to explore protein-based enzyme function. Maquette design and construction methods make use of iterative steps, retraceable when necessary, to successfully develop a protein family of sturdy and versatile single-chain three- and four-α-helical structural platforms readily expressible in bacteria. Internally, they prove malleable enough to incorporate in prescribed positions most natural redox cofactors and many more simplified synthetic analogues. External polarity, charge-patterning and chemical linkers direct maquettes to functional assembly in membranes, on nanostructured titania, and to organize on selected planar surfaces and materials. These protein maquettes engage in light harvesting and energy transfer, in photochemical charge separation and electron transfer, in stable dioxygen binding and in simple oxidative chemistry that is the basis of multi-electron oxidative and reductive catalysis.


Assuntos
Oxirredutases/síntese química , Engenharia de Proteínas/métodos , Proteínas Recombinantes/síntese química , Biologia Sintética/métodos , Oxirredução , Oxirredutases/química , Proteínas Recombinantes/química
13.
Anal Chem ; 83(22): 8756-65, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21961699

RESUMO

We report the synthesis, calibration, and examples of application of two new phosphorescent probes, Oxyphor R4 and Oxyphor G4, optimized specifically for in vivo oxygen imaging by phosphorescence quenching. These "protected" dendritic probes can operate in either albumin-rich (blood plasma) or albumin-free (interstitial space) environments at all physiological oxygen concentrations, from normoxic to deep hypoxic conditions. Oxyphors R4 and G4 are derived from phosphorescent Pd-meso-tetra-(3,5-dicarboxyphenyl)-porphyrin (PdP) or Pd-meso-tetra-(3,5-dicarboxyphenyl)-tetrabenzoporphyrin (PdTBP), respectively, and possess features common for protected dendritic probes, i.e., hydrophobic dendritic encapsulation of phosphorescent metalloporphyrins and hydrophilic PEGylated periphery. The new Oxyphors are highly soluble in aqueous environments and do not permeate biological membranes. The probes were calibrated under physiological conditions (pH 6.4-7.8) and temperatures (22-38 °C), showing high stability, reproducibility of signals, and lack of interactions with biological solutes. Oxyphor G4 was used to dynamically image intravascular and interstitial oxygenation in murine tumors in vivo. The physiological relevance of the measurements was demonstrated by dynamically recording changes in tissue oxygenation during application of anesthesia (isofluorane). These experiments revealed that changes in isofluorane concentration significantly affect tissue oxygenation.


Assuntos
Fibrossarcoma/diagnóstico , Substâncias Luminescentes , Metaloporfirinas , Neoplasias Experimentais/diagnóstico , Oximetria , Animais , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/química , Medições Luminescentes , Metaloporfirinas/síntese química , Metaloporfirinas/química , Camundongos , Camundongos Endogâmicos C3H , Camundongos Nus , Oxigênio/análise , Oxigênio/metabolismo
14.
Photochem Photobiol Sci ; 10(6): 1056-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21409208

RESUMO

Biological oxygen measurements by phosphorescence quenching make use of exogenous phosphorescent probes, which are introduced directly into the medium of interest (e.g. blood or interstitial fluid) where they serve as molecular sensors for oxygen. The byproduct of the quenching reaction is singlet oxygen, a highly reactive species capable of damaging biological tissue. Consequently, potential probe phototoxicity is a concern for biological applications. Herein, we compared the ability of polyethyleneglycol (PEG)-coated Pd tetrabenzoporphyrin (PdTBP)-based dendritic nanoprobes of three successive generations to sensitize singlet oxygen. It was found that the size of the dendrimer has practically no effect on the singlet oxygen sensitization efficiency in spite of the strong attenuation of the triplet quenching rate with an increase in the dendrimer generation. This unexpected result is due to the fact that the lifetime of the PdTBP triplet state in the absence of oxygen increases with dendritic generation, thus compensating for the concomitant decrease in the rate of quenching. Nevertheless, in spite of their ability to sensitize singlet oxygen, the phosphorescent probes were found to be non-phototoxic when compared with the commonly used photodynamic drug Photofrin in a standard cell-survival assay. The lack of phototoxicity is presumably due to the inability of PEGylated probes to associate with cell surfaces and/or penetrate cellular membranes. In contrast, conventional photosensitizers bind to cell components and act by generating singlet oxygen inside or in the immediate vicinity of cellular organelles. Therefore, PEGylated dendritic probes are safe to use for tissue oxygen measurements as long as the light doses are less than or equal to those commonly employed in photodynamic therapy.


Assuntos
Dendrímeros/química , Substâncias Luminescentes/química , Oxigênio/química , Porfirinas/química , Animais , Linhagem Celular Tumoral , Éter de Diematoporfirina/toxicidade , Luz , Substâncias Luminescentes/toxicidade , Camundongos , Paládio/química , Polietilenoglicóis/química , Porfirinas/toxicidade , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Espectrometria de Fluorescência
15.
ACS Omega ; 6(48): 32809-32817, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34901630

RESUMO

We demonstrate that because of the efficient generation of triplet excited state under UV or visible-light irradiation, meso-antracenyl-BODIPY donor-acceptor dyad can catalyze atom-transfer radical addition (ATRA) reactions between bromomalonate and alkenes. This finding paves the way for the design and application of the new type of heavy atom-free organic chromophores for photocatalysis.

16.
Int J Radiat Oncol Biol Phys ; 111(1): 240-248, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33845146

RESUMO

PURPOSE: Delivery of radiation at ultrahigh dose rates (UHDRs), known as FLASH, has recently been shown to preferentially spare normal tissues from radiation damage compared with tumor tissues. However, the underlying mechanism of this phenomenon remains unknown, with one of the most widely considered hypotheses being that the effect is related to substantial oxygen depletion upon FLASH, thereby altering the radiochemical damage during irradiation, leading to different radiation responses of normal and tumor cells. Testing of this hypothesis would be advanced by direct measurement of tissue oxygen in vivo during and after FLASH irradiation. METHODS AND MATERIALS: Oxygen measurements were performed in vitro and in vivo using the phosphorescence quenching method and a water-soluble molecular probe Oxyphor 2P. The changes in oxygen per unit dose (G-values) were quantified in response to irradiation by 10 MeV electron beam at either UHDR reaching 300 Gy/s or conventional radiation therapy dose rates of 0.1 Gy/s. RESULTS: In vitro experiments with 5% bovine serum albumin solutions at 23°C resulted in G-values for oxygen consumption of 0.19 to 0.21 mm Hg/Gy (0.34-0.37 µM/Gy) for conventional irradiation and 0.16 to 0.17 mm Hg/Gy (0.28-0.30 µM/Gy) for UHDR irradiation. In vivo, the total decrease in oxygen after a single fraction of 20 Gy FLASH irradiation was 2.3 ± 0.3 mm Hg in normal tissue and 1.0 ± 0.2 mm Hg in tumor tissue (P < .00001), whereas no decrease in oxygen was observed from a single fraction of 20 Gy applied in conventional mode. CONCLUSIONS: Our observations suggest that oxygen depletion to radiologically relevant levels of hypoxia is unlikely to occur in bulk tissue under FLASH irradiation. For the same dose, FLASH irradiation induces less oxygen consumption than conventional irradiation in vitro, which may be related to the FLASH sparing effect. However, the difference in oxygen depletion between FLASH and conventional irradiation could not be quantified in vivo because measurements of oxygen depletion under conventional irradiation are hampered by resupply of oxygen from the blood.


Assuntos
Neoplasias Experimentais/radioterapia , Oxigênio/análise , Animais , Camundongos , Neoplasias Experimentais/metabolismo , Consumo de Oxigênio , Dosagem Radioterapêutica
17.
Cell Metab ; 29(3): 736-744.e7, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30686745

RESUMO

Quantitative imaging of oxygen distributions in tissue can provide invaluable information about metabolism in normal and diseased states. Two-photon phosphorescence lifetime microscopy (2PLM) has been developed to perform measurements of oxygen in vivo with micron-scale resolution in 3D; however, the method's potential has not yet been fully realized due to the limitations of current phosphorescent probe technology. Here, we report a new sensor, Oxyphor 2P, that enables oxygen microscopy twice as deep (up to 600 µm below the tissue surface) and with ∼60 times higher speed than previously possible. Oxyphor 2P allows longitudinal oxygen measurements without having to inject the probe directly into the imaged region. As proof of principle, we monitored oxygen dynamics for days following micro-stroke induced by occlusion of a single capillary in the mouse brain. Oxyphor 2P opens up new possibilities for studies of tissue metabolic states using 2PLM in a wide range of biomedical research areas.


Assuntos
Encéfalo/diagnóstico por imagem , Capilares/diagnóstico por imagem , Medições Luminescentes/métodos , Microscopia Confocal/métodos , Oxigênio/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fótons
18.
Elife ; 82019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31305237

RESUMO

Our understanding of how capillary blood flow and oxygen distribute across cortical layers to meet the local metabolic demand is incomplete. We addressed this question by using two-photon imaging of resting-state microvascular oxygen partial pressure (PO2) and flow in the whisker barrel cortex in awake mice. Our measurements in layers I-V show that the capillary red-blood-cell flux and oxygenation heterogeneity, and the intracapillary resistance to oxygen delivery, all decrease with depth, reaching a minimum around layer IV, while the depth-dependent oxygen extraction fraction is increased in layer IV, where oxygen demand is presumably the highest. Our findings suggest that more homogeneous distribution of the physiological observables relevant to oxygen transport to tissue is an important part of the microvascular network adaptation to local brain metabolism. These results will inform the biophysical models of layer-specific cerebral oxygen delivery and consumption and improve our understanding of the diseases that affect cerebral microcirculation.


Assuntos
Capilares/fisiologia , Córtex Cerebral/fisiologia , Circulação Cerebrovascular , Oxigênio/metabolismo , Animais , Camundongos , Pressão Parcial
19.
J Biomed Opt ; 23(12): 1-9, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30516039

RESUMO

Impaired oxygen delivery and/or consumption in the retinal tissue underlies the pathophysiology of many retinal diseases. However, the essential tools for measuring oxygen concentration in retinal capillaries and studying oxygen transport to retinal tissue are still lacking. We show that two-photon phosphorescence lifetime microscopy can be used to map absolute partial pressures of oxygen (pO2) in the retinal capillary plexus. Measurements were performed at various retinal depths in anesthetized mice under systemic normoxic and hyperoxic conditions. We used a newly developed two-photon phosphorescent oxygen probe, based on a two-photon absorbing platinum tetraphthalimidoporphyrin, and commercially available optics without correction for optical aberrations of the eye. The transverse and axial distances within the tissue volume were calibrated using a model of the eye's optical system. We believe this is the first demonstration of in vivo depth-resolved imaging of pO2 in retinal capillaries. Application of this method has the potential to advance our understanding of oxygen delivery on the microvascular scale and help elucidate mechanisms underlying various retinal diseases.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Oxigênio , Vasos Retinianos , Animais , Feminino , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/sangue , Oxigênio/metabolismo , Pressão Parcial , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/metabolismo
20.
Neurophotonics ; 5(3): 035003, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30137881

RESUMO

We present a dual-modality imaging system combining laser speckle contrast imaging and oxygen-dependent quenching of phosphorescence to simultaneously map cortical blood flow and oxygen tension ( pO2 ) in mice. Phosphorescence signal localization is achieved through the use of a digital micromirror device (DMD) that allows for selective excitation of arbitrary regions of interest. By targeting both excitation maxima of the oxygen-sensitive Oxyphor PtG4, we are able to examine the effects of excitation wavelength on the measured phosphorescence lifetime. We demonstrate the ability to measure the differences in pO2 between arteries and veins and large changes during a hyperoxic challenge. We dynamically monitor blood flow and pO2 during DMD-targeted photothrombotic occlusion of an arteriole and highlight the presence of an ischemia-induced depolarization. Chronic tracking of the ischemic lesion over eight days revealed a rapid recovery, with the targeted vessel fully reperfusing and pO2 returning to baseline values within five days. This system has broad applications for studying the acute and chronic pathophysiology of ischemic stroke and other vascular diseases of the brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA