Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 31(14): 4151-9, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25793709

RESUMO

The interactions between the strong polyelectrolyte sodium poly(styrenesulfonate), NaPSS, and the neutral polymer poly(vinylpyrrolidone), PVP, were investigated in bulk and at the silica/solution interface using a combination of diffusion nuclear magnetic resonance spectroscopy (NMR), small-angle neutron scattering (SANS), solvent relaxation NMR, and ellipsometry. We show for the first time that complex formation occurs between NaPSS and PVP in solution; the complexes formed were shown not to be influenced by pH variation, whereas increasing the ionic strength increases the complexation of NaPSS but does not influence the PVP directly. The complexes formed contained a large proportion of NaPSS. Study of these interactions at the silica interface demonstrated that complexes also form at the nanoparticle interface where PVP is added in the system prior to NaPSS. For a constant PVP concentration and varying NaPSS concentration, the system remains stable until NaPSS is added in excess, which leads to depletion flocculation. Surface complex formation using the layer-by-layer technique was also reported at a planar silica interface.


Assuntos
Poliestirenos/química , Povidona/química , Concentração de Íons de Hidrogênio , Concentração Osmolar
2.
Langmuir ; 31(30): 8469-77, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26131846

RESUMO

A series of dumbbell-shaped nanocomposite materials of poly(dimethylsiloxanes) (PDMSs) and polyhedral oligomeric silsesquioxanes (POSSs) were synthesized through hydrosilylation reactions of allyl- and vinyl-POSS and hydride-terminated PDMS. The chemical structures of the dumbbell-shaped materials, so-called POSS-PDMS-POSS triblocks, were characterized by (1)H NMR and FT-IR spectroscopy. The molecular weights of the triblock polymers were determined by gel permeation chromatography (GPC). Their size was analyzed by small-angle neutron scattering (SANS) and pulsed-field gradient stimulated echo (PFG STE) NMR experiments. The impact of POSS on the molecular mobility of the PDMS middle chain was observed by using (1)H spin-spin (T2) relaxation NMR. In contrast to the PDMS melts, the triblocks showed an increase in mobility with increasing molecular weight over the range studied due to the reduced relative concentration of constraints imposed by the end-tethered nanoparticles. The triblock systems were used to compare the impact of tethered nanoparticles on the mobility of the linear component compared to the mobility of the polymer in conventional blended nanocomposites. The tethered nanoparticles were found to provide more reinforcement than physically dispersed particles especially at high molecular weights (low particle concentration). The physical blends showed an apparent percolation threshold behavior.

3.
Soft Matter ; 4(6): 1215-1218, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32907264

RESUMO

UV light can be used to change ordering in lyotropic lamellar (Lα) phases containing a photolyzable anionic surfactant 4-hexylphenylazosulfonate (C6PAS).

4.
Langmuir ; 25(12): 6767-71, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19432397

RESUMO

The effect of drug addition and pH variation on Pluronic copolymer solutions has been investigated using pulsed-field gradient (PFG) NMR. Addition of ibuprofen to Pluronic P104 in solution reduced the overall pH from 7.5 to 4.5, as well as promoting micellization; a substantial increase in the hydrodynamic radius of the micelles, from 57.7 to 102.3 A was observed, along with an increase in the fraction of polymer micellized. The aggregation behavior was attributed primarily to the presence of ibuprofen, rather than the reduction in pH observed, since the micellization of P104 alone was not found to be significantly altered by pH changes in the region of interest. Conversely, for the P104 solutions containing ibuprofen, a strong pH-dependence was observed when raising the pH above the pK(a) of ibuprofen. The data obtained showed that, above pH 4.5, ibuprofen is gradually released from the micelles as a result of its improved solubility, leading to a reduction in the polymer aggregation toward that observed before the addition of ibuprofen.


Assuntos
Concentração de Íons de Hidrogênio , Ibuprofeno/química , Espectroscopia de Ressonância Magnética/métodos , Poloxâmero/química , Soluções
5.
Langmuir ; 24(14): 7323-8, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18547088

RESUMO

Adsorbed polymer and polyelectrolyte layers on colloidal silica nanoparticles have been studied in the presence of various salts and surfactants using photon correlation spectroscopy and solvent relaxation NMR. Poly(ethylene oxide) (PEO; molar mass 103.6 kg mol (-1)) adsorbed with a relatively high affinity and gave a layer thickness of 4.2 +/- 0.2 nm. While the nonionic surfactant used only increased this thickness slightly, anionic surfactants had a much greater effect, mainly due to repulsions between adsorbed aggregates, leading to expansion of the layer. A nonionic/anionic surfactant mixture was also tested and resulted in a larger increase in layer thickness than any of the individual surfactants. The dominant factor on addition of salt was generally the reduced solvency of PEO, which resulted in a further increase in the layer thickness but in some cases caused flocculation. This was not the case when the surfactant was sodium dodecylbenzenesulfonate; instead screening of the intermicellar repulsions possibly combined with surfactant-cation binding resulted in a reduction in the layer thickness. In comparison the affinity between silica and sodium polystyrenesulfonate was very weak. Anionic surfactants and salts did not noticeably increase the strength of adsorption, but instead encouraged flocculation. The situation was different with a nonionic surfactant, which was able to adsorb to silica itself and apparently facilitated a degree of polyelectrolyte adsorption as well.

6.
Langmuir ; 24(15): 7875-80, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18588323

RESUMO

Fourier transform relaxation NMR has been used to study how the mobility of poly(ethylene oxide) is affected by its adsorption onto colloidal silica particles of various sizes. Novel results have been obtained which illustrate the unexploited potential of this method for the study of interfacial species in complex systems. The results quantify how polymer mobility varies along an adsorption isotherm. When the particles are in excess, the polymer is strongly adsorbed and hence has a large spin-spin magnetic relaxation rate constant, R(2). The value of R(2) in this region increases with particle size, because the associated reduction in particle surface curvature results in a reduction in the mobility of the adsorbed polymer. This is accompanied by a reduction in the signal intensity, as a higher fraction of the polymer is adsorbed in the form of train segments too immobile to detect using the Carr-Purcell-Meiboom-Gill pulse sequence. When the polymer concentration reaches approximately 0.5 mg m(-2), the initial region of high affinity adsorption ends and so the polymer solution concentration increases. This is accompanied by a reduction in R(2), which then approaches the value for a simple polymer solution in the absence of particles. The results are corroborated by comparison with rheological measurements and molecular dynamics simulations of an analogous particle-polymer system.

7.
Langmuir ; 23(11): 6191-7, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17439259

RESUMO

Sodium polyacrylate is well known for its application as a scale inhibitor in common household products, and the effects of both monovalent and divalent metal cations on its structure have been covered by a range of previous publications. In the present article, we extend this work by using solvent relaxation NMR to look at the adsorption of the polyelectrolyte onto both positively and negatively charged silica and how this is altered by calcium chloride. In the anionic case, we found that polyacrylate adsorption was predictably very weak, and interestingly, perhaps counterintuitively, it was further reduced by calcium ions. This is probably linked to NaPA-Ca2+ binding, which changes the conformation and charge of the polyelectrolyte. In contrast, NaPA adsorbs very strongly on cationic silica, to the point that precipitation often occurs, particularly on addition of salt.

8.
Langmuir ; 23(5): 2408-13, 2007 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-17309202

RESUMO

Solvent relaxation NMR and small-angle neutron scattering have been used to characterize adsorbed poly(ethylene oxide) (PEO) layers on silica at a range of surfactant and electrolyte concentrations. Below the critical aggregation concentration (cac), the results suggest that sodium dodecyl sulfate (SDS) interacts relatively weakly, perhaps analogously to a simple salt reducing the solvency of PEO. This is evidenced by a decrease in the adsorbed layer thickness combined with an increase in the bound fraction, although the total adsorbed amount is not greatly affected. The layer thickness goes through a minimum at the cac, after which further SDS addition results in the formation of PEO/SDS aggregates that repel each other and, hence, tend to desorb. The adsorbed amount therefore decreases, from 0.7 mg m(-2) initially to 0.2 mg m(-2) with 32 mM SDS. The aggregates that remain adsorbed also repel, and hence, there is an increase in the layer thickness and the persistence length, while the bound fraction is reduced. In comparison, the effects of electrolyte at the ionic strength studied are relatively minimal. There is, however, evidence that the repulsions between adsorbed PEO/SDS aggregates are partially screened, allowing them to approach each other more readily. This leads to a contraction of the adsorbed layer when the SDS concentration is sufficiently high.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA