Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Pancreatology ; 24(4): 624-629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580492

RESUMO

Postoperative pancreatic fistula (POPF) is a major cause of morbidity and mortality after pancreatoduodenectomy (PD), and previous research has focused on patient-related risk factors and comparisons between anastomotic techniques. However, it is recognized that surgeon experience is an important factor in POPF outcomes, and that there is a significant learning curve for the pancreatic anastomosis. The aim of this study was to review the current literature on training models for the pancreatic anastomosis, and to explore areas for future research. It is concluded that research is needed to understand the mechanical properties of the human pancreas in an effort to develop a synthetic model that closely mimics its mechanical properties. Virtual reality (VR) is an attractive alternative to synthetic models for surgical training, and further work is needed to develop a VR pancreatic anastomosis training module that provides both high fidelity and haptic feedback.


Assuntos
Anastomose Cirúrgica , Pâncreas , Humanos , Pâncreas/cirurgia , Pancreaticoduodenectomia/educação , Fístula Pancreática/etiologia , Fístula Pancreática/prevenção & controle , Realidade Virtual , Modelos Anatômicos
2.
BMC Musculoskelet Disord ; 23(1): 228, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260135

RESUMO

BACKGROUND: Articular cartilage is known to be a viscoelastic material, however little research has explored the impact of cartilage water content and bone density on its viscoelasticity. This study aimed to isolate subchondral bone density and hydration of articular cartilage and analyse their effects on the viscoelastic properties of articular cartilage. METHODS: Dynamic mechanical analysis was used to test samples at frequencies of 1, 8, 12, 29, 49, 71, and 88 Hz. Synthetic bone material with densities of 663.7 kg/m3 and 156.8 kg/m3 were used to mimic the bone mineral density (BMD). Dehydration occurred in a stepwise manner at relative humidity (RH) levels of 100%, 30%, and 1%. These relative humidity levels led to water contents of approximately 76%, 8.5%, and ≈ 0% by mass, respectively. RESULTS: Samples from eight bovine femoral heads were tested under a sinusoidal load. Storage stiffness was lower on the lower substrate density. Storage stiffness, though, increased as cartilage samples were dehydrated from a water content of 76% to 8.5%; decreasing again as the water content was further reduced. Loss stiffness was lower on a lower density substrate and decreased as the water content decreased. CONCLUSIONS: In conclusions, a decrease in hydration decreases the loss stiffness, but a non-linear relationship between hydration and storage stiffness may exist. Additionally, higher BMD values led to greater storage and loss stiffnesses.


Assuntos
Densidade Óssea , Cartilagem Articular , Animais , Fenômenos Biomecânicos , Cartilagem Articular/química , Cartilagem Articular/diagnóstico por imagem , Bovinos , Elasticidade , Cabeça do Fêmur , Humanos
3.
Perfusion ; 36(3): 253-260, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32693675

RESUMO

Strut chordae, on their own, are not typically thought to aid mitral valve competence. The aim of this study is to assess whether strut chordae aid mitral valve competence during acute annular dilation. Twelve porcine hearts were dissected and tested using an in vitro simulator, with the mitral annulus tested in either a 'normal' or a dilated configuration. The normal configuration included a diameter of 30 mm, a posterior leaflet 'radius' of 15 mm and a commissural corner 'radius' of 7.5 mm; the dilated annular template instead used dimensions of 50 mm, 25 mm and 12.5 mm, respectively. Each mitral valve underwent ten repeat tests with a target systolic pressure of 100 mmHg. No significant difference in the pressure was detected between the dilated and regular annuli for the mitral valves tested (95 ± 3 mmHg cf. 95 ± 2 mmHg). However, the volume of regurgitation for a dilated annulus was 28 ml greater than for a valve with a normal annulus. Following severing of strut chordae, there was a significant reduction in the systolic pressure withstood before regurgitation by mitral valves with dilated annuli (60 ± 29 mmHg cf. 95 ± 2 mmHg for normal annular dimensions; p < 0.05). In conclusion, strut chordae tendineae may play a role in aiding mitral valve competence during pathophysiology.


Assuntos
Insuficiência da Valva Mitral , Valva Mitral , Animais , Pressão Sanguínea , Cordas Tendinosas , Dilatação , Suínos
4.
BMC Musculoskelet Disord ; 20(1): 575, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31785617

RESUMO

BACKGROUND: Despite it being known that subchondral bone affects the viscoelasticity of cartilage, there has been little research into the mechanical properties of osteochondral tissue as a whole system. This study aims to unearth new knowledge concerning the dynamic behaviour of human subchondral bone and how energy is transferred through the cartilage-bone interface. METHODS: Dynamic mechanical analysis was used to determine the frequency-dependent (1-90 Hz) viscoelastic properties of the osteochondral unit (cartilage-bone system) as well as isolated cartilage and bone specimens extracted from human femoral heads obtained from patients undergoing total hip replacement surgery, with a mean age of 78 years (N = 5, n = 22). Bone mineral density (BMD) was also determined for samples using micro-computed tomography as a marker of tissue health. RESULTS: Cartilage storage and loss moduli along with bone storage modulus were found to increase logarithmically (p < 0.05) with frequency. The mean cartilage storage modulus was 34.4 ± 3.35 MPa and loss modulus was 6.17 ± 0.48 MPa (mean ± standard deviation). In contrast, bone loss modulus decreased logarithmically between 1 and 90 Hz (p < 0.05). The storage stiffness of the cartilage-bone-core was found to be frequency-dependent with a mean value of 1016 ± 54.0 N.mm- 1, while the loss stiffness was determined to be frequency-independent at 78.84 ± 2.48 N.mm- 1. Notably, a statistically significant (p < 0.05) linear correlation was found between the total energy dissipated from the isolated cartilage specimens, and the BMD of the isolated bone specimens at all frequencies except at 90 Hz (p = 0.09). CONCLUSIONS: The viscoelastic properties of the cartilage-bone core were significantly different to the tissues in isolation (p < 0.05). Results from this study demonstrate that the functionality of these tissues arises because they operate as a unit. This is evidenced through the link between cartilage energy dissipated and bone BMD. The results may provide insights into the functionality of the osteochondral unit, which may offer further understanding of disease progression, such as osteoarthritis (OA). Furthermore, the results emphasise the importance of studying human tissue, as bovine models do not always display the same trends.


Assuntos
Densidade Óssea/fisiologia , Cartilagem Articular/patologia , Cartilagem Articular/fisiologia , Elasticidade/fisiologia , Colo do Fêmur/patologia , Colo do Fêmur/fisiologia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Masculino , Viscosidade
5.
Perfusion ; 34(3): 225-230, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30394849

RESUMO

OBJECT: Mitral regurgitation (MR) is a condition in which the mitral valve does not prevent the reversal of blood flow from the left ventricle into the left atrium. This study aimed at numerically developing a model to mimic MR and poor leaflet coaptation and also comparing the performance of a normal mitral valve to that of the MR conditions at different gap junctions of 1, 3 and 5 mm between the anterior and posterior leaflets. RESULTS: The results revealed no blood flow to the left ventricle when a gap between the leaflets was 0 mm. However, MR increased this blood flow, with increases in the velocity and pressure within the atrium. However, the pressure within the aorta did not vary meaningfully (ranging from 22 kPa for a 'healthy' model to 25 kPa for severe MR). CONCLUSIONS: The findings from this study have implications not only for understanding the changes in pressure and velocity as a result of MR in the ventricle, atrium or aorta, but also for the development of a computational model suitable for clinical translation when diagnosing and determining treatment for MR.


Assuntos
Ventrículos do Coração/fisiopatologia , Insuficiência da Valva Mitral/fisiopatologia , Valva Mitral/fisiopatologia , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Simulação por Computador , Ventrículos do Coração/patologia , Hemodinâmica , Humanos , Valva Mitral/patologia , Insuficiência da Valva Mitral/patologia , Modelos Cardiovasculares , Sístole
6.
BMC Musculoskelet Disord ; 19(1): 384, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355307

RESUMO

BACKGROUND: Changes in bone mineral density have been implicated with the onset of osteoarthritis, but its role in inducing failure of articular cartilage mechanically is unclear. This study aimed to determine the effect of substrate density, as the underlying bone, on the surface damage of cartilage-off-bone, at frequencies associated with gait, and above. METHODS: Bovine articular cartilage samples were tested off-bone to assess induced damage with an indenter under a compressive sinusoidal load range of 5-50 N at frequencies of 1, 10 and 50 Hz, corresponding to normal and above normal gait respectively, for up to 10,000 cycles. Cartilage samples were tested on four underlying substrates with densities of 0.1556, 0.3222, 0.5667 and 0.6000 g/cm3. India ink was applied to identify damage as cracks, measured across their length using ImageJ software. Linear regression was performed to identify if statistical significance existed between substrate density, and surface damage of articular cartilage-off-bone, at all three frequencies investigated (p < 0.05). RESULTS: Surface damage significantly increased (p < 0.05) with substrate density at 10 Hz of applied frequency. Crack length at this frequency reached the maximum of 10.95 ± 9.12 mm (mean ± standard deviation), across all four substrates tested. Frequencies applied at 1 and 50 Hz failed to show a significant increase (p > 0.05) in surface damage with an increase in substrate density, at which the maximum mean crack length were 3.01 ± 3.41 mm and 5.65 ± 6.54 mm, respectively. Crack formation at all frequencies tended to form at the periphery of the cartilage specimen, with multiple straight-line cracking observed at 10 Hz, in comparison to single straight-line configurations produced at 1 and 50 Hz. CONCLUSIONS: The effect of substrate density on the surface damage of articular cartilage-off-bone is multi-factorial, with an above-normal gait frequency. At 1 Hz cartilage damage is not associated with substrate density, however at 10 Hz, it is. This study has implications on the effects of the factors that contribute to the onset of osteoarthritis.


Assuntos
Densidade Óssea/fisiologia , Cartilagem Articular/fisiologia , Cabeça do Úmero/fisiologia , Animais , Cartilagem Articular/anatomia & histologia , Bovinos , Cabeça do Úmero/anatomia & histologia , Estresse Mecânico , Propriedades de Superfície
7.
BMC Musculoskelet Disord ; 17(1): 419, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716169

RESUMO

BACKGROUND: The purpose of this study was to compare the frequency-dependent viscoelastic properties of human and bovine cartilage. METHODS: Full-depth cartilage specimens were extracted from bovine and human femoral heads. Using dynamic mechanical analysis, the viscoelastic properties of eight bovine and six human specimens were measured over the frequency range 1 Hz to 88 Hz. Significant differences between bovine and human cartilage viscoelastic properties were assessed using a Mann-Whitney test (p < 0.05). RESULTS: Throughout the range of frequencies tested and for both species, the storage modulus was greater than the loss modulus and both were frequency-dependent. The storage and loss moduli of all human and bovine cartilage specimens presented a logarithmic relationship with respect to frequency. The mean human storage modulus ranged from 31.9 MPa to 43.3 MPa, while the mean bovine storage modulus ranged from 54.0 MPa to 80.5 MPa; bovine storage moduli were 1.7 to 1.9 times greater than the human modulus. Similarly, the loss modulus of bovine cartilage was 2.0 to 2.1 times greater than human. The mean human loss modulus ranged from 5.3 MPa to 8.5 MPa while bovine moduli ranged from 10.6 MPa to 18.1 MPa. CONCLUSION: Frequency-dependent viscoelastic trends of bovine articular cartilage were consistent with those of human articular cartilage; this includes a similar frequency dependency and high-frequency plateau. Bovine cartilage was, however, 'stiffer' than human by a factor of approximately 2. With these provisos, bovine articular cartilage may be a suitable dynamic model for human articular cartilage.


Assuntos
Cartilagem Articular/química , Elasticidade , Viscosidade , Idoso , Idoso de 80 Anos ou mais , Animais , Fenômenos Biomecânicos , Bovinos , Feminino , Cabeça do Fêmur , Humanos , Modelos Biológicos , Estresse Fisiológico
8.
Perfusion ; 31(8): 683-690, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27484972

RESUMO

A computational fluid dynamics model of a bicuspid aortic valve has been developed using idealised three-dimensional geometry. The aim was to compare how the orifice area and leaflet orientation affect the hemodynamics of a pure bicuspid valve. By applying physiologic material properties and boundary conditions, blood flow shear stresses were predicted during peak systole. A reduced orifice area altered blood velocity, the pressure drop across the valve and the wall shear stress through the valve. Bicuspid models predicted impaired blood flow similar to a stenotic valve, but the flow patterns were specific to leaflet orientation. Flow patterns developed in bicuspid aortic valves, such as helical flow, were sensitive to cusp orientation. In conclusion, the reduced opening area of a bicuspid aortic valve amplifies any impaired hemodynamics, but cusp orientation determines subsequent flow patterns which may determine the specific regions downstream from the valve most at risk of clinical complications.

9.
BMC Musculoskelet Disord ; 15: 205, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24929249

RESUMO

BACKGROUND: The knee is an incongruent joint predisposed to developing osteoarthritis, with certain regions being more at risk of cartilage degeneration even in non-osteoarthrosed joints.At present it is unknown if knee regions prone to cartilage degeneration have similar storage and/or loss stiffness, and frequency-dependent trends, to other knee joint cartilage. The aim of this study was to determine the range of frequency-dependent, viscoelastic stiffness of articular cartilage across the bovine knee joint. Such changes were determined at frequencies associated with normal and rapid heel-strike rise times. METHODS: Cartilage on bone, obtained from bovine knee joints, was tested using dynamic mechanical analysis (DMA). DMA was performed at a range of frequencies between 1 and 88 Hz (i.e. relevant to normal and rapid heel-strike rise times). Viscoelastic stiffness of cartilage from the tibial plateau, femoral condyles and patellar groove were compared. RESULTS: For all samples the storage stiffness increased, but the loss stiffness remained constant, with frequency. They were also dependent on cartilage thickness. Both the loss stiffness and the storage stiffness decreased with cartilage thickness. Femoral condyles had the thinnest cartilage but had the highest storage and loss stiffness. Tibial plateau cartilage not covered by the meniscus had the thickest cartilage and lowest storage and loss stiffness. CONCLUSION: Differences in regional thickness of knee joint cartilage correspond to altered frequency-dependent, viscoelastic stiffness.


Assuntos
Cartilagem Articular/fisiologia , Articulação do Joelho/fisiologia , Animais , Fenômenos Biomecânicos , Cartilagem Articular/ultraestrutura , Bovinos , Elasticidade , Marcha , Técnicas In Vitro , Meniscos Tibiais/fisiologia , Viscosidade , Suporte de Carga
10.
Biomech Model Mechanobiol ; 23(4): 1197-1207, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38483696

RESUMO

Understanding the viscoelastic behavior of pediatric brain tissue is critical to interpret how external mechanical forces affect head injury in children. However, knowledge of the viscoelastic properties of pediatric brain tissue is limited, and this reduces the biofidelity of developed numeric simulations of the pediatric head in analysis of brain injury. Thus, it is essential to characterize the viscoelastic behavior of pediatric brain tissue in various loading conditions and to identify constitutive models. In this study, the pediatric porcine brain tissue was investigated in compression with determine the viscoelasticity under small and large strain, respectively. A range of frequencies between 0.1 and 40 Hz was applied to determine frequency-dependent viscoelastic behavior via dynamic mechanical analysis, while brain samples were divided into three strain rate groups of 0.01/s, 1/s and 10/s for compression up to 0.3 strain level and stress relaxation to obtain time-dependent viscoelastic properties. At frequencies above 20 Hz, the storage modulus did not increase, while the loss modulus increased continuously. With strain rate increasing from 0.01/s to 10/s, the mean stress at 0.1, 0.2 and 0.3 strain increased to approximate 6.8, 5.6 and 4.4 times, respectively. The brain compressive response was sensitive to strain rate and frequency. The characterization of brain tissue will be valuable for development of head protection systems and prediction of brain injury.


Assuntos
Encéfalo , Força Compressiva , Elasticidade , Estresse Mecânico , Animais , Viscosidade , Encéfalo/fisiologia , Fatores de Tempo , Suínos , Sus scrofa , Módulo de Elasticidade
11.
R Soc Open Sci ; 11(6): 240383, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39100168

RESUMO

This study aims to develop an automated framework for the characterization of materials which are both hyper-elastic and viscoelastic. This has been evaluated using human articular cartilage (AC). AC (26 tissue samples from 5 femoral heads) underwent dynamic mechanical analysis with a frequency sweep from 1 to 90 Hz. The conversion from a frequency- to time-domain hyper-viscoelastic material model was approximated using a modular framework design where finite element analysis was automated, and a genetic algorithm and interior point technique were employed to solve and optimize the material approximations. Three orders of approximation for the Prony series were evaluated at N = 1, 3 and 5 for 20 and 50 iterations of a genetic cycle. This was repeated for 30 simulations of six combinations of the above all with randomly generated initialization points. There was a difference between N = 1 and N = 3/5 of approximately ~5% in terms of the error estimated. During unloading the opposite was seen with a 10% error difference between N = 5 and 1. A reduction of ~1% parameter error was found when the number of generations increased from 20 to 50. In conclusion, the framework has proved effective in characterizing human AC.

12.
Biomed Eng Online ; 12: 122, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24267976

RESUMO

BACKGROUND: The aim of this study was to propose a method to estimate the maximum pressure in the left ventricle (MPLV) for a healthy subject, based on cardiac outputs measured by echo-Doppler (non-invasive) and catheterization (invasive) techniques at rest and during exercise. METHODS: Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. A Fluid-structure Interaction (FSI) simulation was performed, using an Arbitrary Lagrangian-Eulerian (ALE) mesh. Boundary conditions were defined as pressure loads on ventricular and aortic sides during ejection phase. The FSI simulation was used to determine a numerical relationship between the cardiac output to aortic diastolic and left ventricular pressures. This relationship enabled the prediction of pressure loads from cardiac outputs measured by invasive and non-invasive clinical methods. RESULTS: Ventricular systolic pressure peak was calculated from cardiac output of Doppler, Fick oximetric and Thermodilution methods leading to a 22%, 18% and 24% increment throughout exercise, respectively. The mean gradients obtained from curves of ventricular systolic pressure based on Doppler, Fick oximetric and Thermodilution methods were 0.48, 0.41 and 0.56 mmHg/heart rate, respectively. Predicted Fick-MPLV differed by 4.7%, Thermodilution-MPLV by 30% and Doppler-MPLV by 12%, when compared to clinical reports. CONCLUSIONS: Preliminary results from one subject show results that are in the range of literature values. The method needs to be validated by further testing, including independent measurements of intraventricular pressure. Since flow depends on the pressure loads, measuring more accurate intraventricular pressures helps to understand the cardiac flow dynamics for better clinical diagnosis. Furthermore, the method is non-invasive, safe, cheap and more practical. As clinical Fick-measured values have been known to be more accurate, our Fick-based prediction could be the most applicable.


Assuntos
Hemodinâmica , Modelos Biológicos , Pressão Ventricular , Adulto , Débito Cardíaco/fisiologia , Exercício Físico/fisiologia , Humanos , Masculino , Oximetria , Descanso/fisiologia
13.
Med Eng Phys ; 121: 104067, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37985031

RESUMO

Mitral valve function depends on its complex geometry and tissue health, with alterations in shape and tissue response affecting the long-term restorarion of function. Previous computational frameworks for biomechanical assessment are mostly based on patient-specific geometries; however, these are not flexible enough to yield a variety of models and assess mitral closure for individually tuned morphological parameters or material property representations. This study details the finite element approach implemented in our previously developed toolbox to assess mitral valve biomechanics and showcases its flexibility through the generation and biomechanical evaluation of different models. A healthy valve geometry was generated and its computational predictions for biomechanics validated against data in the literature. Moreover, two mitral valve models including geometric alterations associated with disease were generated and analysed. The healthy mitral valve model yielded biomechanical predictions in terms of valve closure dynamics, leaflet stresses and papillary muscle and chordae forces comparable to previous computational and experimental studies. Mitral valve function was compromised in geometries representing disease, expressed by the presence of regurgitating areas, elevated stress on the leaflets and unbalanced subvalvular apparatus forces. This showcases the flexibility of the toolbox concerning the generation of a range of mitral valve models with varying geometric definitions and material properties and the evaluation of their biomechanics.


Assuntos
Insuficiência da Valva Mitral , Valva Mitral , Humanos , Valva Mitral/fisiologia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Músculos Papilares/fisiologia , Modelos Cardiovasculares
14.
Proc Inst Mech Eng H ; 237(7): 879-889, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37345411

RESUMO

The purpose of this study was to create a preliminary set of experimentally validated Finite Element Analysis (FEA) models, in order to predict the dynamic mechanical behaviour of human articular cartilage (AC). Current models consider static loading with limited independent experimental validation, while the models for this study assess dynamic loading of AC, with direct comparison and validation to physical testing. Three different FEA models of AC were constructed, which considered both linear elastic and hyperelastic models; Neo-Hookean and Ogden. Models were validated using the data collected from compression testing of human femoral heads across 0-1.7 MPa (quasi-static tests and dynamic mechanical analysis). The linear elastic model was inadequate, with a 10-fold over prediction of the displacement dynamic amplitude. The Neo-Hookean model accurately predicted the dynamic amplitude but failed to predict the initial compression of the cartilage, with a 10 times overprediction. The Ogden model provided the best results, with both the initial compression lying within one standard deviation of that observed in the validation data set, and the dynamic amplitude of the same order of magnitude. In conclusion, this study has found that the fast dynamic response of human AC is best represented by a third order Ogden model.


Assuntos
Cartilagem Articular , Humanos , Cartilagem Articular/fisiologia , Estresse Mecânico , Pressão , Análise de Elementos Finitos , Modelos Biológicos , Elasticidade , Fenômenos Biomecânicos
15.
Proc Inst Mech Eng H ; 226(5): 389-96, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22720392

RESUMO

This study investigates the rupture rate and morphology of articular cartilage by altering the bathing environments of healthy and degenerate bovine cartilage. Soaking tissues in either distilled water or 1.5 M NaCI saline was performed in order to render the tissues into a swollen or dehydrated state, respectively. Creep compression was applied using an 8 mm flat-ended polished indenter that contained a central pore of 450 microm in diameter, providing a consistent region for rupture to occur across all 105 tested specimens. Rupture rates were determined by varying the nominal compressive stress and the loading time. Similar rupture rates were observed with the swollen healthy and degenerate specimens, loaded with either 6 or 7MPa of nominal compressive stress over 11 and 13 min. The observed rupture rates for the dehydrated specimens loaded with 7 MPa over 60 and 90s were 20% versus 40% and 20% versus 60% for healthy and degenerate tissues, respectively. At 8 MPa of nominal compressive stress over 60 and 90s the observed rupture rates were 20% versus 60% and 40% versus 80% for healthy and degenerate tissues, respectively; with all dehydrated degenerate tissues exhibiting a greater tendency to rupture (Barnard's exact test, p < 0.05). Rupture morphologies were only different in the swollen degenerate tissues (p < 0.05). The mechanisms by which dehydration and swelling induce initial surface rupture of mildly degenerate articular cartilage differ. Dehydration increases the likelihood that the surface will rupture, however, swelling alters the observed rupture morphology.


Assuntos
Cartilagem Articular/lesões , Estresse Mecânico , Água/metabolismo , Animais , Fenômenos Biomecânicos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Bovinos , Patela , Ruptura/patologia , Propriedades de Superfície
16.
Proc Inst Mech Eng H ; 226(4): 275-87, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22611868

RESUMO

Repair of the mitral valve is defined (loosely) as a procedure that alters the valve structure, without replacement, enabling the natural valve itself to continue to perform under the physical conditions to which it is exposed. As the mitral valve is driven by flow and pressure, it should be feasible to analyse and assess its function, failure and repair as a mechanical system. This article reviews the current state of mechanical evaluation of surgical repairs of the failed mitral valve of the heart. This review describes the anatomy and physiology of the mitral valve, followed by the failure of the mitral valve from a mechanical point of view. The surgical methods used to repair failed valves are introduced, while the use of engineering analysis to aid understanding of mitral valve repair is also reviewed. Finally, a section on recommendations for development and future uses of engineering techniques to surgical repair are presented.


Assuntos
Anuloplastia da Valva Mitral/instrumentação , Insuficiência da Valva Mitral/fisiopatologia , Insuficiência da Valva Mitral/cirurgia , Valva Mitral/fisiopatologia , Valva Mitral/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Técnicas de Sutura , Humanos , Anuloplastia da Valva Mitral/métodos , Procedimentos de Cirurgia Plástica/instrumentação
17.
Ann Biomed Eng ; 49(12): 3737-3747, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34608583

RESUMO

The mechanical characterization of brain tissue has been generally analyzed in the frequency and time domain. It is crucial to understand the mechanics of the brain under realistic, dynamic conditions and convert it to enable mathematical modelling in a time domain. In this study, the compressive viscoelastic properties of brain tissue were investigated under time and frequency domains with the same physical conditions and the theory of viscoelasticity was applied to estimate the prediction of viscoelastic response in the time domain based on frequency-dependent mechanical moduli through Finite Element models. Storage and loss modulus were obtained from white and grey matter, of bovine brains, using dynamic mechanical analysis and time domain material functions were derived based on a Prony series representation. The material models were evaluated using brain testing data from stress relaxation and hysteresis in the time dependent analysis. The Finite Element models were able to represent the trend of viscoelastic characterization of brain tissue under both testing domains. The outcomes of this study contribute to a better understanding of brain tissue mechanical behaviour and demonstrate the feasibility of deriving time-domain viscoelastic parameters from frequency-dependent compressive data for biological tissue, as validated by comparing experimental tests with computational simulations.


Assuntos
Substância Cinzenta/fisiologia , Modelos Biológicos , Substância Branca/fisiologia , Animais , Bovinos , Elasticidade , Análise de Elementos Finitos , Estresse Mecânico , Fatores de Tempo , Viscosidade , Suporte de Carga
18.
J Mech Behav Biomed Mater ; 114: 104204, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33218929

RESUMO

Brain tissue is vulnerable and sensitive, predisposed to potential damage under various conditions of mechanical loading. Although its material properties have been investigated extensively, the frequency-dependent viscoelastic characterization is currently limited. Computational models can provide a non-invasive method by which to analyze brain injuries and predict the mechanical response of the tissue. The brain injuries are expected to be induced by dynamic loading, mostly in compression and measurement of dynamic viscoelastic properties are essential to improve the accuracy and variety of finite element simulations on brain tissue. Thus, the aim of this study was to investigate the compressive frequency-dependent properties of brain tissue and present a mathematical model in the frequency domain to capture the tissue behavior based on experimental results. Bovine brain specimens, obtained from four locations of corona radiata, corpus callosum, basal ganglia and cortex, were tested under compression using dynamic mechanical analysis over a range of frequencies between 0.5 and 35 Hz to characterize the regional and directional response of the tissue. The compressive dynamic properties of bovine brain tissue were heterogenous for regions but not sensitive to orientation showing frequency dependent statistical results, with viscoelastic properties increasing with frequency. The mean storage and loss modulus were found to be 12.41 kPa and 5.54 kPa, respectively. The material parameters were obtained using the linear viscoelastic model in the frequency domain and the numeric simulation can capture the compressive mechanical behavior of bovine brain tissue across a range of frequencies. The frequency-dependent viscoelastic characterization of brain tissue will improve the fidelity of the computational models of the head and provide essential information to the prediction and analysis of brain injuries in clinical treatments.


Assuntos
Encéfalo , Substância Branca , Animais , Bovinos , Simulação por Computador , Elasticidade , Estresse Mecânico , Viscosidade
19.
PLoS One ; 16(11): e0259196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34731193

RESUMO

Coronary bifurcations are prone to atherosclerotic plaque growth, experiencing regions of reduced wall shear stress (WSS) and increased platelet adhesion. This study compares effects across different rheological approaches on hemodynamics, combined with a shear stress exposure history model of platelets within a stenosed porcine bifurcation. Simulations used both single/multiphase blood models to determine which approach best predicts phenomena associated with atherosclerosis and atherothrombosis. A novel Lagrangian platelet tracking model was used to evaluate residence time and shear history of platelets indicating likely regions of thrombus formation. Results show a decrease in area of regions with pathologically low time-averaged WSS with the use of multiphase models, particularly in a stenotic bifurcation. Significant non-Newtonian effects were observed due to low-shear and varying hematocrit levels found on the outer walls of the bifurcation and distal to the stenosis. Platelet residence time increased 11% in the stenosed artery, with exposure times to low-shear sufficient for red blood cell aggregation (>1.5 s). increasing the risk of thrombosis. This shows stenotic artery hemodynamics are inherently non-Newtonian and multiphase, with variations in hematocrit (0.163-0.617) and elevated vorticity distal to stenosis (+15%) impairing the function of the endothelium via reduced time-averaged WSS regions, rheological properties and platelet activation/adhesion.


Assuntos
Estenose Coronária/sangue , Estenose Coronária/fisiopatologia , Vasos Coronários/fisiopatologia , Animais , Hemodinâmica , Modelos Cardiovasculares , Ativação Plaquetária , Reologia , Estresse Mecânico , Suínos
20.
Comput Biol Med ; 135: 104628, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34246162

RESUMO

The mitral valve is a complex anatomical structure, whose shape is key to several traits of its function and disease, being crucial for the success of surgical repair and implantation of medical devices. The aim of this study was to develop a parametric, scalable, and clinically useful model of the mitral valve, enabling the biomechanical evaluation of mitral repair techniques through finite element simulations. MATLAB was used to parameterize the valve: the annular boundary was sampled from a porcine mitral valve mesh model and landmark points and relevant boundaries were selected for the parameterization of leaflets using polynomial fitting. Several geometric parameters describing the annulus, leaflet shape and papillary muscle position were implemented and used to scale the model according to patient dimensions. The developed model, available as a toolbox, allows for the generation of a population of models using patient-specific dimensions obtained from medical imaging or averaged dimensions evaluated from empirical equations based on the Golden Proportion. The average model developed using this framework accurately represents mitral valve shapes, associated with relative errors reaching less than 10% for annular and leaflet length dimensions, and less than 24% in comparison with clinical data. Moreover, model generation takes less than 5 min of computing time, and the toolbox can account for individual morphological variations and be employed to evaluate mitral valve biomechanics; following further development and validation, it will aid clinicians when choosing the best patient-specific clinical intervention and improve the design process of new medical devices.


Assuntos
Insuficiência da Valva Mitral , Valva Mitral , Animais , Fenômenos Biomecânicos , Humanos , Valva Mitral/diagnóstico por imagem , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA