Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(32): e2207806, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37060223

RESUMO

Ratiometric fluorescent nanothermometers with near-infrared emission play an important role in in vivo sensing since they can be used as intracellular thermal sensing probes with high spatial resolution and high sensitivity, to investigate cellular functions of interest in diagnosis and therapy, where current approaches are not effective. Herein, the temperature-dependent fluorescence of organic nanoparticles is designed, synthesized, and studied based on the dual emission, generated by monomer and excimer species, of the tris(2,4,6-trichlorophenyl)methyl radical (TTM) doping organic nanoparticles (TTMd-ONPs), made of optically neutral tris(2,4,6-trichlorophenyl)methane (TTM-αH), acting as a matrix. The excimer emission intensity of TTMd-ONPs decreases with increasing temperatures whereas the monomer emission is almost independent and can be used as an internal reference. TTMd-ONPs show a great temperature sensitivity (3.4% K-1 at 328 K) and a wide temperature response at ambient conditions with excellent reversibility and high colloidal stability. In addition, TTMd-ONPs are not cytotoxic and their ratiometric outputs are unaffected by changes in the environment. Individual TTMd-ONPs are able to sense temperature changes at the nano-microscale. In vivo thermometry experiments in Caenorhabditis elegans (C. elegans) worms show that TTMd-ONPs can locally monitor internal body temperature changes with spatio-temporal resolution and high sensitivity, offering multiple applications in the biological nanothermometry field.


Assuntos
Nanopartículas , Termometria , Animais , Caenorhabditis elegans , Temperatura
2.
Angew Chem Int Ed Engl ; 62(4): e202211937, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36308301

RESUMO

UDP-glucuronic acid (UDP-GlcA) 4-epimerase illustrates an important problem regarding enzyme catalysis: balancing conformational flexibility with precise positioning. The enzyme coordinates the C4-oxidation of the substrate by NAD+ and rotation of a decarboxylation-prone ß-keto acid intermediate in the active site, enabling stereoinverting reduction of the keto group by NADH. We reveal the elusive rotational landscape of the 4-keto intermediate. Distortion of the sugar ring into boat conformations induces torsional mobility in the enzyme's binding pocket. The rotational endpoints show that the 4-keto sugar has an undistorted 4 C1 chair conformation. The equatorially placed carboxylate group disfavors decarboxylation of the 4-keto sugar. Epimerase variants lead to decarboxylation upon removal of the binding interactions with the carboxylate group in the opposite rotational isomer of the substrate. Substitutions R185A/D convert the epimerase into UDP-xylose synthases that decarboxylate UDP-GlcA in stereospecific, configuration-retaining reactions.


Assuntos
Racemases e Epimerases , Uridina Difosfato Ácido Glucurônico , Uridina Difosfato Ácido Glucurônico/metabolismo , Descarboxilação , Rotação , Ácido Glucurônico , Racemases e Epimerases/metabolismo , Cetoses , NAD/química
3.
ACS Catal ; 12(8): 4737-4743, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35465242

RESUMO

Bifidobacterium bifidum lacto-N-biosidase (LnbB) is a critical enzyme for the degradation of human milk oligosaccharides in the gut microbiota of breast-fed infants. Guided by recent crystal structures, we unveil its molecular mechanism of catalysis using QM/MM metadynamics. We show that the oligosaccharide substrate follows 1 S 3/1,4 B → [4 E]‡ → 4 C 1/4 H 5 and 4 C 1/4 H 5 → [4 E/4 H 5]‡ → 1,4 B conformational itineraries for the two successive reaction steps, with reaction free energy barriers in agreement with experiments. The simulations also identify a critical histidine (His263) that switches between two orientations to modulate the pK a of the acid/base residue, facilitating catalysis. The reaction intermediate of LnbB is best depicted as an oxazolinium ion, with a minor population of neutral oxazoline. The present study sheds light on the processing of oligosaccharides of the early life microbiota and will be useful for the engineering of LnbB and similar glycosidases for biocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA