Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 12(10)2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39458360

RESUMO

Cystic fibrosis (CF) is a life-threatening genetic disease characterised by chronic lung infections sustained by opportunistic pathogens such as Pseudomonas aeruginosa. During the chronic long-lasting lung infections, P. aeruginosa adapts to the host environment. Hypermutability, mainly due to defects in the DNA repair system, resulting in an increased spontaneous mutation rate, represents a way to boost the rapid adaptation frequently encountered in CF P. aeruginosa isolates. We selected 609 isolates from 51 patients with CF chronically colonised by P. aeruginosa to study, by full-length genome sequencing, the longitudinal evolution of the bacterium. We recovered at least one hypermutable (mutator) isolate in 57% of patients. By combining genomic information and phenotypic analyses, we followed the evolutionary pathways of the P. aeruginosa mutator strains, identifying their contribution to multi-drug resistance and the emergence of new sub-lineages. By implementing patient clinical data, we observed that mutators preferentially follow a specific evolutionary trajectory in patients with a negative clinical outcome and that maintenance antibiotic polytherapy, based on alternating molecules, apparently reduces the occurrence of hypermutability. Finally, we draw attention to the possibility that modulator-induced changes in the pulmonary environment may be associated with the onset of hypermutability.

2.
J Clin Med ; 12(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37892720

RESUMO

Acinetobacter baumannii is one of the pathogens most involved in health care-associated infections in recent decades. Known for its ability to accumulate several antimicrobial resistance mechanisms, it possesses the oxacillinase blaoxa-23, a carbapenemase now endemic in Italy. Acinetobacter species are not frequently observed in patients with cystic fibrosis, and multidrug-resistant A. baumannii is a rare event in these patients. Non-mucoid A. baumannii carrying the blaoxa-23 gene has been sporadically detected. Here, we describe the methods used to detect blaoxa-23 in the first established case of pulmonary infection via a mucoid strain of A. baumannii producing carbapenemase in a 24-year-old cystic fibrosis patient admitted to Bambino Gesù Children's Hospital in Rome, Italy. This strain, which exhibited an extensively drug-resistant antibiotype, also showed a great ability to further increase its resistance in a short time.

3.
Front Med (Lausanne) ; 9: 818669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355602

RESUMO

Cystic fibrosis (CF) is the most common rare disease caused by a mutation of the CF transmembrane conductance regulator gene encoding a channel protein of the apical membrane of epithelial cells leading to alteration of Na+ and K+ transport, hence inducing accumulation of dense and sticky mucus and promoting recurrent airway infections. The most detected bacterium in CF patients is Pseudomonas aeruginosa (PA) which causes chronic colonization, requiring stringent antibiotic therapies that, in turn induces multi-drug resistance. Despite eradication attempts at the first infection, the bacterium is able to utilize several adaptation mechanisms to survive in hostile environments such as the CF lung. Its adaptive machinery includes modulation of surface molecules such as efflux pumps, flagellum, pili and other virulence factors. In the present study we compared surface protein expression of PA multi- and pan-drug resistant strains to wild-type antibiotic-sensitive strains, isolated from the airways of CF patients with chronic colonization and recent infection, respectively. After shaving with trypsin, microbial peptides were analyzed by tandem-mass spectrometry on a high-resolution platform that allowed the identification of 174 differentially modulated proteins localized in the region from extracellular space to cytoplasmic membrane. Biofilm assay was performed to characterize all 26 PA strains in term of biofilm production. Among the differentially expressed proteins, 17 were associated to the virulome (e.g., Tse2, Tse5, Tsi1, PilF, FliY, B-type flagellin, FliM, PyoS5), six to the resistome (e.g., OprJ, LptD) and five to the biofilm reservoir (e.g., AlgF, PlsD). The biofilm assay characterized chronic antibiotic-resistant isolates as weaker biofilm producers than wild-type strains. Our results suggest the loss of PA early virulence factors (e.g., pili and flagella) and later expression of virulence traits (e.g., secretion systems proteins) as an indicator of PA adaptation and persistence in the CF lung environment. To our knowledge, this is the first study that, applying a shaving proteomic approach, describes adaptation processes of a large collection of PA clinical strains isolated from CF patients in early and chronic infection phases.

4.
Microorganisms ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668889

RESUMO

As disease worsens in patients with cystic fibrosis (CF), Pseudomonas aeruginosa (PA) colonizes the lungs, causing pulmonary failure and mortality. Progressively, PA forms typical biofilms, and antibiotic treatments determine multidrug-resistant (MDR) PA strains. To advance new therapies against MDR PA, research has reappraised bacteriophages (phages), viruses naturally infecting bacteria. Because few in vitro studies have tested phages on CF PA biofilms, general reliability remains unclear. This study aimed to test in vitro newly isolated environmental phage activity against PA isolates from patients with CF at Bambino Gesù Children's Hospital (OBG), Rome, Italy. After testing in vitro phage activities, we combined phages with amikacin, meropenem, and tobramycin against CF PA pre-formed biofilms. We also investigated new emerging morphotypes and bacterial regrowth. We obtained 22 newly isolated phages from various environments, including OBG. In about 94% of 32 CF PA isolates tested, these phages showed in vitro PA lysis. Despite poor efficacy against chronic CF PA, five selected-lytic-phages (Φ4_ZP1, Φ9_ZP2, Φ14_OBG, Φ17_OBG, and Φ19_OBG) showed wide host activity. The Φ4_ZP1-meropenem and Φ14_OBG-tobramycin combinations significantly reduced CF PA biofilms (p < 0.001). To advance potential combined phage-antibiotic therapy, we envisage further in vitro test combinations with newly isolated phages, including those from hospital environments, against CF PA biofilms from early and chronic infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA