RESUMO
Through machine learning, identifying correlations between amino acid sequences of antibodies and their observed characteristics, we developed an internal viscosity prediction model to empower the rapid engineering of therapeutic antibody candidates. For a highly viscous anti-IL-13 monoclonal antibody, we used a structure-based rational design strategy to generate a list of variants that were hypothesized to mitigate viscosity. Our viscosity prediction tool was then used as a screen to cull virtually engineered variants with a probability of high viscosity while advancing those with a probability of low viscosity to production and testing. By combining the rational design engineering strategy with the in silico viscosity prediction screening step, we were able to efficiently improve the highly viscous anti-IL-13 candidate, successfully decreasing the viscosity at 150 mg/mL from 34 cP to 13 cP in a panel of 16 variants.
Assuntos
Anticorpos Monoclonais , Engenharia de Proteínas , Viscosidade , Engenharia de Proteínas/métodos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Aprendizado de Máquina , Sequência de Aminoácidos , HumanosRESUMO
The tumor-associated antigen STEAP1 is a potential therapeutic target that is expressed in most prostate tumors and at increased levels in metastatic castration-resistant prostate cancer (mCRPC). We developed a STEAP1-targeted XmAb 2+1 T-cell engager (TCE) molecule, AMG 509 (also designated xaluritamig), that is designed to redirect T cells to kill prostate cancer cells that express STEAP1. AMG 509 mediates potent T cell-dependent cytotoxicity of prostate cancer cell lines in vitro and promotes tumor regression in xenograft and syngeneic mouse models of prostate cancer in vivo. The avidity-driven activity of AMG 509 enables selectivity for tumor cells with high STEAP1 expression compared with normal cells. AMG 509 is the first STEAP1 TCE to advance to clinical testing, and we report a case study of a patient with mCRPC who achieved an objective response on AMG 509 treatment. SIGNIFICANCE: Immunotherapy in prostate cancer has met with limited success due to the immunosuppressive microenvironment and lack of tumor-specific targets. AMG 509 provides a targeted immunotherapy approach to engage a patient's T cells to kill STEAP1-expressing tumor cells and represents a new treatment option for mCRPC and potentially more broadly for prostate cancer. See related commentary by Hage Chehade et al., p. 20. See related article by Kelly et al., p. 76. This article is featured in Selected Articles from This Issue, p. 5.
Assuntos
Anticorpos Biespecíficos , Neoplasias de Próstata Resistentes à Castração , Masculino , Camundongos , Animais , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Linfócitos T , Imunoterapia , Anticorpos Biespecíficos/uso terapêutico , Microambiente Tumoral , Antígenos de Neoplasias , Oxirredutases/uso terapêuticoRESUMO
Bispecific antibodies (Bispecifics) demonstrate exceptional clinical potential to address some of the most complex diseases. However, Bispecific production in a single cell often requires the correct pairing of multiple polypeptide chains for desired assembly. This is a considerable hurdle that hinders the development of many immunoglobulin G (IgG)-like bispecific formats. Our approach focuses on the rational engineering of charged residues to facilitate the chain pairing of distinct heavy chains (HC). Here, we deploy structure-guided protein design to engineer charge pair mutations (CPMs) placed in the CH3-CH3' interface of the fragment crystallizable (Fc) region of an antibody (Ab) to correctly steer heavy chain pairing. When used in combination with our stable effector functionless 2 (SEFL2.2) technology, we observed high pairing efficiency without significant losses in expression yields. Furthermore, we investigate the relationship between CPMs and the sequence diversity in the parental antibodies, proposing a rational strategy to deploy these engineering technologies.
RESUMO
Mammalian expression systems are used routinely for the production of recombinant proteins as therapeutic molecules as well as research tools. Transient expression has become increasingly popular in recent years due to its rapid timeline and improvements in expression level. While improvements to transient expression systems have focused mainly on the level of protein expression, the aspect of protein quality has received little attention. The removal of undesirable products, such as aggregation, depends primarily on purification, requiring additional cumbersome steps, which can lead to a lower product yield and longer timelines. In this study, we show that reducing the level of transcription by transfecting at a lower gene dose improves the quality of secreted molecules prone to aggregation. For gene dosing to have this effect, it is critical for the carrier DNA to be an empty vector containing the same elements as the gene containing plasmid. This approach can be used in combination with a temperature shift to hypothermic conditions during production to enhance the effect. The observed improvements not only minimized aggregation levels, but also generated products with overall superior quality, including more homogeneous signal peptide cleavage and N-linked glycosylation profiles. These techniques have produced a similar improvement in product quality with a variety of other molecules, suggesting that this may be a general approach to enhance product quality from transient expression systems.
Assuntos
Técnicas de Cultura de Células/métodos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Transfecção/métodos , Dosagem de Genes , Glicosilação , Células HEK293 , Humanos , Agregados Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , TemperaturaRESUMO
Cereal grains accumulate carbohydrates, storage proteins and fatty acids via different pathways during their development. Many genes that participate in nutrient partitioning during grain filling and that affect starch quality have been identified. To understand how the expression of these genes is coordinated during grain development, a genomic approach to surveying the participation and interactions of all the pathways is necessary. Using recently published rice genome information, we designed a rice GeneChip microarray that covers half the rice genome. By monitoring the expression of 21,000 genes in parallel, we identified genes involved in the grain filling process and found that the expression of genes involved in different pathways is coordinately controlled in a synchronized fashion during grain filling. Interestingly, a known promoter element in genes encoding seed storage proteins, AACA, is statistically over-represented among the 269 genes in different pathways with diverse functions that are significantly up-regulated during grain filling. By expression pattern matching, a group of transcription factors that have the potential to interact with this element was identified. We also found that most genes in the starch biosynthetic pathway show multiple distinct spatial and temporal expression patterns, suggesting that different isoforms of a given enzyme are expressed in different tissues and at different developmental stages. Our results reveal key regulatory machinery and provide an opportunity for modifying multiple pathways by manipulating key regulatory elements for improving grain quality and quantity.
RESUMO
Recombinant human lecithin-cholesterol acyltransferase Fc fusion (huLCAT-Fc) is a chimeric protein produced by fusing human Fc to the C-terminus of the human enzyme via a linker sequence. The huLCAT-Fc homodimer contains five N-linked glycosylation sites per monomer. The heterogeneity and site-specific distribution of the various glycans were examined using enzymatic digestion and LC-MS/MS, followed by automatic processing. Almost all of the N-linked glycans in human LCAT are fucosylated and sialylated. The predominant LCAT N-linked glycoforms are biantennary glycans, followed by triantennary sugars, whereas the level of tetraantennary glycans is much lower. Glycans at the Fc N-linked site exclusively contain typical asialobiantennary structures. HuLCAT-Fc was also confirmed to have mucin-type glycans attached at T407 and S409 . When LCAT-Fc fusions were constructed using a G-S-G-G-G-G linker, an unexpected +632 Da xylose-based glycosaminoglycan (GAG) tetrasaccharide core of Xyl-Gal-Gal-GlcA was attached to S418 . Several minor intermediate species including Xyl, Xyl-Gal, Xyl-Gal-Gal, and a phosphorylated GAG core were also present. The mucin-type O-linked glycans can be effectively released by sialidase and O-glycanase; however, the GAG could only be removed and localized using chemical alkaline ß-elimination and targeted LC-MS/MS. E416 (the C-terminus of LCAT) combined with the linker sequence is likely serving as a substrate for peptide O-xylosyltransferase. HuLCAT-Fc shares some homology with the proposed consensus site near the linker sequence, in particular, the residues underlined PPPE416 GS418 GGGGDK. GAG incorporation can be eliminated through engineering by shifting the linker Ser residue downstream in the linker sequence.
Assuntos
Oligossacarídeos/química , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Polissacarídeos/química , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Glicopeptídeos/química , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Espectrometria de Massas , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Plants alter their gene expression patterns in response to drought. Sometimes these transcriptional changes are successful adaptations leading to tolerance, while in other instances the plant ultimately fails to adapt to the stress and is labeled as sensitive to that condition. We measured the expression of approximately half of the genes in rice ( approximately 21,000) in phenotypically divergent accessions and their transgressive segregants to associate stress-regulated gene expression changes with quantitative trait loci (QTLs) for osmotic adjustment (OA, a trait associated with drought tolerance). Among the parental lines, a total of 662 transcripts were differentially expressed. Only 12 genes were induced in the low OA parent, CT9993, at moderate dehydration stress levels while over 200 genes were induced in the high OA parent, IR62266. The high and low OA parents had almost entirely different transcriptional responses to dehydration stress suggesting a complete absence of an appropriate response rather than a slower response in CT9993. Sixty-nine genes were up-regulated in all the high OA lines and nine of those genes were not induced in any of the low OA lines. The annotation of four of those genes, sucrose synthase, a pore protein, a heat shock and an LEA protein, suggests a role in maintaining high OA and membrane stability. Of the 3,954-probe sets that correspond to the QTL intervals, very few had a differential expression pattern between the high OA and low OA lines that suggest a role leading to the phenotypic variation. However, several promising candidates were identified for each of the five QTL including a snRNP auxiliary factor, a LEA protein, a protein phosphatase 2C and a Sar1 homolog.
Assuntos
Desastres , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Oryza , Locos de Características Quantitativas , Genótipo , Fases de Leitura Aberta , Oryza/genética , Oryza/fisiologia , FenótipoRESUMO
BACKGROUND: Genetic control of gene transcription is a key component in genome evolution. To understand the transcriptional basis of natural variation, we have studied genome-wide variations in transcription and characterized the genetic variations in regulatory elements among Arabidopsis accessions. RESULTS: Among five accessions (Col-0, C24, Ler, WS-2, and NO-0) 7,508 probe sets with no detectable genomic sequence variations were identified on the basis of the comparative genomic hybridization to the Arabidopsis GeneChip microarray, and used for accession-specific transcriptome analysis. Two-way ANOVA analysis has identified 60 genes whose mRNA levels differed in different accession backgrounds in an organ-dependent manner. Most of these genes were involved in stress responses and late stages of plant development, such as seed development. Correlation analysis of expression patterns of these 7,508 genes between pairs of accessions identified a group of 65 highly plastic genes with distinct expression patterns in each accession. CONCLUSION: Genes that show substantial genetic variation in mRNA level are those with functions in signal transduction, transcription and stress response, suggesting the existence of variations in the regulatory mechanisms for these genes among different accessions. This is in contrast to those genes with significant polymorphisms in the coding regions identified by genomic hybridization, which include genes encoding transposon-related proteins, kinases and disease-resistance proteins. While relatively fewer sequence variations were detected on average in the coding regions of these genes, a number of differences were identified from the upstream regions, several of which alter potential cis-regulatory elements. Our results suggest that nucleotide polymorphisms in regulatory elements of genes encoding controlling factors could be primary targets of natural selection and a driving force behind the evolution of Arabidopsis accessions.
Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Variação Genética/genética , Transcrição Gênica/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Análise em Microsséries , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Regressão , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Especificidade da EspécieRESUMO
The signal transduction network controlling plant responses to pathogens includes pathways requiring the signal molecules salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). The network topology was explored using global expression phenotyping of wild-type and signaling-defective mutant plants, including eds3, eds4, eds5, eds8, pad1, pad2, pad4, NahG, npr1, sid2, ein2, and coi1. Hierarchical clustering was used to define groups of mutations with similar effects on gene expression and groups of similarly regulated genes. Mutations affecting SA signaling formed two groups: one comprised of eds4, eds5, sid2, and npr1-3 affecting only SA signaling; and the other comprised of pad2, eds3, npr1-1, pad4, and NahG affecting SA signaling as well as another unknown process. Major differences between the expression patterns in NahG and the SA biosynthetic mutant sid2 suggest that NahG has pleiotropic effects beyond elimination of SA. A third group of mutants comprised of eds8, pad1, ein2, and coi1 affected ethylene and jasmonate signaling. Expression patterns of some genes revealed mutual inhibition between SA- and JA-dependent signaling, while other genes required JA and ET signaling as well as the unknown signaling process for full expression. Global expression phenotype similarities among mutants suggested, and experiments confirmed, that EDS3 affects SA signaling while EDS8 and PAD1 affect JA signaling. This work allowed modeling of network topology, definition of co-regulated genes, and placement of previously uncharacterized regulatory genes in the network.
Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Ciclopentanos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Análise por Conglomerados , Genes Reguladores/genética , Genoma de Planta , Mutação/genética , Oxilipinas , Fenótipo , Pseudomonas/fisiologiaRESUMO
Systemic infections of plants by viruses require that viruses modify host cells in order to facilitate infections. These modifications include induction of host factors required for replication, propagation and movement, and suppression of host defense responses, which are likely to be associated with changes in host gene expression. Past studies of the effects of viral infection on gene expression in susceptible hosts have been limited to only a handful of genes. To gain broader insight into the responses elicited by viruses in susceptible hosts, high-density oligonucleotide probe microarray technology was used. Arabidopsis leaves were either mock inoculated or inoculated with cucumber mosaic cucumovirus, oil seed rape tobamovirus, turnip vein clearing tobamovirus, potato virus X potexvirus, or turnip mosaic potyvirus. Inoculated leaves were collected at 1, 2, 4, and 5 days after inoculation, total RNA was isolated, and samples were hybridized to Arabidopsis GeneChip microarrays (Affymetrix). Microarray hybridization revealed co-ordinated changes in gene expression in response to infection by diverse viruses. These changes include virus-general and virus-specific alterations in the expression of genes associated with distinct defense or stress responses. Analyses of the promoters of these genes further suggest that diverse RNA viruses elicit common responses in susceptible plant hosts through signaling pathways that have not been previously characterized.