Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(9): e2216430120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802441

RESUMO

Monitoring the extracellular environment for danger signals is a critical aspect of cellular survival. However, the danger signals released by dying bacteria and the mechanisms bacteria use for threat assessment remain largely unexplored. Here, we show that lysis of Pseudomonas aeruginosa cells releases polyamines that are subsequently taken up by surviving cells via a mechanism that relies on Gac/Rsm signaling. While intracellular polyamines spike in surviving cells, the duration of this spike varies according to the infection status of the cell. In bacteriophage-infected cells, intracellular polyamines are maintained at high levels, which inhibits replication of the bacteriophage genome. Many bacteriophages package linear DNA genomes and linear DNA is sufficient to trigger intracellular polyamine accumulation, suggesting that linear DNA is sensed as a second danger signal. Collectively, these results demonstrate how polyamines released by dying cells together with linear DNA allow P. aeruginosa to make threat assessments of cellular injury.


Assuntos
Bacteriófagos , Poliaminas , Bacteriófagos/genética , Bactérias , Pseudomonas aeruginosa , DNA
2.
Infect Immun ; 91(7): e0055022, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37347167

RESUMO

Staphylococcus aureus is a public health threat due to the prevalence of antibiotic resistance and the capacity of this organism to infect numerous organs in vertebrates. To generate energy needed to proliferate within tissues, S. aureus transitions between aerobic respiration and fermentation. Fermentation results in a distinct colony morphology called the small-colony variant (SCV) due to decreased membrane potential and ATP production. These traits promote increased resistance to aminoglycoside antibiotics. Consequently, SCVs are associated with persistent infections. We hypothesize that dedicated physiological pathways support fermentative growth of S. aureus that represent potential targets for treatment of resistant infections. Lipoteichoic acid (LTA) is an essential component of the Gram-positive cell envelope that functions to maintain ion homeostasis, resist osmotic stress, and regulate autolytic activity. Previous studies revealed that perturbation of LTA reduces viability of metabolically restricted S. aureus, but the mechanism by which LTA supports S. aureus metabolic versatility is unknown. Though LTA is essential, the enzyme that synthesizes the modified lipid anchor, YpfP, is dispensable. However, ypfP mutants produce altered LTA, leading to elongation of the polymer and decreased cell association. We demonstrate that viability of ypfP mutants is significantly reduced upon environmental and genetic induction of fermentation. This anaerobic viability defect correlates with decreased membrane potential and is restored upon cation supplementation. Additionally, ypfP suppressor mutants exhibiting restored anaerobic viability harbor compensatory mutations in the LTA biosynthetic pathway that restore membrane potential. Overall, these results demonstrate that LTA maintains membrane potential during fermentative proliferation and promotes S. aureus metabolic versatility.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Staphylococcus aureus/metabolismo , Lipopolissacarídeos/metabolismo , Mutação , Ácidos Teicoicos , Resistência Microbiana a Medicamentos
3.
Mol Microbiol ; 117(6): 1405-1418, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35510701

RESUMO

M23 family endopeptidases play important roles in cell division and separation in a wide variety of bacteria. Recent studies have suggested that these proteins also contribute to bacterial virulence. However, the biological function of M23 peptidases in pathogenic spirochetes remains unexplored. Here, we describe Borrelia burgdorferi, the bacterial pathogen causing Lyme disease, requires a putative M23 family homolog, BB0761, for spirochete morphology and cell division. Indeed, the inactivation of bb0761 led to an aberrant filamentous phenotype as well as the impairment of B. burgdorferi growth in vitro. These phenotypes were complemented not only with B. burgdorferi bb0761, but also with the mepM gene from E. coli. Moreover, the bb0761 mutant showed a complete loss of infectivity in a murine model of Lyme borreliosis. Resistance of the mutant to osmotic and oxidative stresses was markedly reduced. Our combined results indicate that BB0761 contributes to B. burgdorferi cell division and virulence.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Escherichia coli/genética , Doença de Lyme/microbiologia , Mamíferos/metabolismo , Camundongos
4.
J Bacteriol ; 204(9): e0024322, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35943250

RESUMO

The bacterial division and cell wall (dcw) cluster is a highly conserved region of the genome which encodes several essential cell division factors, including the central divisome protein FtsZ. Understanding the regulation of this region is key to our overall understanding of the division process. mraZ is found at the 5' end of the dcw cluster, and previous studies have described MraZ as a sequence-specific DNA binding protein. In this article, we investigate MraZ to elucidate its role in Bacillus subtilis. Through our investigation, we demonstrate that increased levels of MraZ result in lethal filamentation due to repression of its own operon (mraZ-mraW-ftsL-pbpB). We observed rescue of filamentation upon decoupling ftsL expression, but not other genes in the operon, from MraZ control. Our data suggest that regulation of the mra operon may be an alternative way for cells to quickly arrest cytokinesis, potentially during entry into the stationary phase and in the event of DNA replication arrest. Furthermore, through time-lapse microscopy, we were able to identify that overexpression of mraZ or depletion of FtsL results in decondensation of the FtsZ ring (Z-ring). Using fluorescent d-amino acid labeling, we also observed that coordinated peptidoglycan insertion at the division site is dysregulated in the absence of FtsL. Thus, we reveal that the precise role of FtsL is in Z-ring maturation and focusing septal peptidoglycan synthesis. IMPORTANCE MraZ is a highly conserved protein found in a diverse range of bacteria, including genome-reduced Mycoplasma. We investigated the role of MraZ in Bacillus subtilis and found that overproduction of MraZ is toxic due to cell division inhibition. Upon further analysis, we observed that MraZ is a repressor of its own operon, which includes genes that encode the essential cell division factors FtsL and PBP2B. We noted that decoupling of ftsL alone was sufficient to abolish MraZ-mediated cell division inhibition. Using time-lapse microscopy, we showed that under conditions where the FtsL level is depleted, the cell division machinery is unable to initiate cytokinesis. Thus, our results pinpoint that the precise role of FtsL is in concentrating septal cell wall synthesis to facilitate cell division.


Assuntos
Bacillus subtilis , Proteínas de Bactérias/metabolismo , Citocinese , Aminoácidos/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Peptidoglicano/metabolismo
5.
Infect Immun ; 90(10): e0037622, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36121221

RESUMO

Acinetobacter baumannii is a formidable opportunistic pathogen that is notoriously difficult to eradicate from hospital settings. This resilience is often attributed to a proclivity for biofilm formation, which facilitates a higher tolerance toward external stress, desiccation, and antimicrobials. Despite this, little is known regarding the mechanisms orchestrating A. baumannii biofilm formation. Here, we performed RNA sequencing (RNA-seq) on biofilm and planktonic populations for the multidrug-resistant isolate AB5075 and identified 438 genes with altered expression. To assess the potential role of genes upregulated within biofilms, we tested the biofilm-forming capacity of their respective mutants from an A. baumannii transposon library. In so doing, we uncovered 24 genes whose disruption led to reduced biofilm formation. One such element, cold shock protein C (cspC), had a highly mucoid colony phenotype, enhanced tolerance to polysaccharide degradation, altered antibiotic tolerance, and diminished adherence to abiotic surfaces. RNA-seq of the cspC mutant revealed 201 genes with altered expression, including the downregulation of pili and fimbria genes and the upregulation of multidrug efflux pumps. Using transcriptional arrest assays, it appears that CspC mediates its effects, at least in part, through RNA chaperone activity, influencing the half-life of several important transcripts. Finally, we show that CspC is required for survival during challenge by the human immune system and is key for A. baumannii dissemination and/or colonization during systemic infection. Collectively, our work identifies a cadre of new biofilm-associated genes within A. baumannii and provides unique insight into the global regulatory network of this emerging human pathogen.


Assuntos
Acinetobacter baumannii , Humanos , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacologia , Biofilmes , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Polissacarídeos/metabolismo , Proteína C/metabolismo , Proteína C/farmacologia , RNA/metabolismo , Virulência/genética
6.
Annu Rev Microbiol ; 71: 393-411, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28697666

RESUMO

The last three decades have witnessed an explosion of discoveries about the mechanistic details of binary fission in model bacteria such as Escherichia coli, Bacillus subtilis, and Caulobacter crescentus. This was made possible not only by advances in microscopy that helped answer questions about cell biology but also by clever genetic manipulations that directly and easily tested specific hypotheses. More recently, research using understudied organisms, or nonmodel systems, has revealed several alternate mechanistic strategies that bacteria use to divide and propagate. In this review, we highlight new findings and compare these strategies to cell division mechanisms elucidated in model organisms.


Assuntos
Bactérias/crescimento & desenvolvimento , Divisão Celular , Técnicas Bacteriológicas/métodos
7.
J Bacteriol ; 203(3)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-32900832

RESUMO

The division and cell wall (dcw) cluster is a highly conserved region of the bacterial genome consisting of genes that encode several cell division and cell wall synthesis factors, including the central division protein FtsZ. The region immediately downstream of ftsZ encodes the ylm genes and is conserved across diverse lineages of Gram-positive bacteria and Cyanobacteria In some organisms, this region remains part of the dcw cluster, but in others, it appears as an independent operon. A well-studied protein coded from this region is the positive FtsZ regulator SepF (YlmF), which anchors FtsZ to the membrane. Recent developments have shed light on the importance of SepF in a range of species. Additionally, new studies are highlighting the importance of the other conserved genes in this neighborhood. In this minireview, we aim to bring together the current research linking the ylm region to cell division and highlight further questions surrounding these conserved genes.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Divisão Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Óperon
8.
Appl Environ Microbiol ; 87(22): e0132721, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34495705

RESUMO

The concept of bacterial dark matter stems from our inability to culture most microbes and represents a fundamental gap in our knowledge of microbial diversity. Here, we present the domestication of such an organism: a previously uncultured, novel species from the rare Actinomycetes genus Verrucosispora. Although initial recovery took >4 months, isolation of phenotypically distinct, domesticated generations occurred within weeks. Two isolates were subjected to phenogenomic analyses, revealing domestication correlated with enhanced growth rates in nutrient-rich media but diminished capacity to metabolize diverse amino acids. This is seemingly mediated by genomic atrophy through a mixed approach of pseudogenization and reversion of pseudogenization of amino acid metabolism genes. Conversely, later generational strains had enhanced spore germination rates, potentially through the reversion of a sporulation-associated kinase from pseudogene to true gene status. We observed that our most wild-type isolate had the greatest potential for antibacterial activity, which correlated with extensive mutational attrition of biosynthetic gene clusters in domesticated strains. Comparative analyses revealed wholesale genomic reordering in strains, with widespread single nucleotide polymorphism, indel, and pseudogene-impactful mutations observed. We hypothesize that domestication of this previously unculturable organism resulted from the shedding of genomic flexibility required for life in a dynamic marine environment, parsing out genetic redundancy to allow for a newfound cultivable amenability. IMPORTANCE The majority of environmental bacteria cannot be cultured within the laboratory. Understanding why only certain environmental isolates can be recovered is key to unlocking the abundant microbial dark matter that is widespread on our planet. In this study, we present not only the culturing but domestication of just such an organism. Although initial recovery took >4 months, we were able to isolate distinct, subpassaged offspring from the originating colony within mere weeks. A phenotypic and genotypic analysis of our generational strains revealed that adaptation to life in the lab occurred as a result of wholesale mutational changes. These permitted an enhanced ability for growth in nutrient rich media but came at the expense of reduced genomic flexibility. We suggest that without dynamic natural environmental stressors our domesticated strains effectively underwent genomic atrophy as they adapted to static conditions experienced in the laboratory.


Assuntos
Genômica , Micromonosporaceae/classificação , Técnicas Bacteriológicas , Genoma Bacteriano , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Pseudogenes
9.
J Bacteriol ; 201(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31405912

RESUMO

Reproduction in the bacterial kingdom predominantly occurs through binary fission-a process in which one parental cell is divided into two similarly sized daughter cells. How cell division, in conjunction with cell elongation and chromosome segregation, is orchestrated by a multitude of proteins has been an active area of research spanning the past few decades. Together, the monumental endeavors of multiple laboratories have identified several cell division and cell shape regulators as well as their underlying regulatory mechanisms in rod-shaped Escherichia coli and Bacillus subtilis, which serve as model organisms for Gram-negative and Gram-positive bacteria, respectively. Yet our understanding of bacterial cell division and morphology regulation is far from complete, especially in noncanonical and non-rod-shaped organisms. In this review, we focus on two proteins that are highly conserved in Gram-positive organisms, DivIVA and its homolog GpsB, and attempt to summarize the recent advances in this area of research and discuss their various roles in cell division, cell growth, and chromosome segregation in addition to their interactome and posttranslational regulation.


Assuntos
Bacillus subtilis/fisiologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Segregação de Cromossomos/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia
10.
J Am Chem Soc ; 141(32): 12697-12706, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31335135

RESUMO

Aggregation-induced emission (AIE) was intensively studied because of packing of small molecules and polymers; however, mid-molecular-weight (1000-3000) molecular scaffold containing a precise number of AIE luminogens is rare. Herein, we report the investigation of three tetraphenylethylene (TPE)-modified sulfono-γ-AApeptides in which multiple TPE moieties are conjugated to the chiral right-handed helical peptidomimetic backbone as functional side chains. The crystal structure of the TPE-α/sulfono-γ-AA peptide 1 demonstrates that because of the rigid helical scaffold of the TPE-α/sulfono-γ-AA peptides, the intramolecular rotations of the TPE with short linker are restricted, therefore leading to the boosted fluorescent emission in solution. Peptides 2 and 3 exhibit aggregation-induced emission enhancement (AIEE), possibly because of the combination of both AIE and rotation restriction. Moreover, because of their preoriented assembly induced by the right-handed helical scaffold, these emissive chiral luminogens show effective circularly polarized luminescence signals with high dissymmetry factor glum. Finally, the amphiphilic nature of TPE-α/sulfono-γ-AA peptides could enable them to penetrate the bacterial membranes and exhibit strong fluorescence. Their antimicrobial activity and labeling-free character could further augment their potential applications in both materials and biomedical sciences.


Assuntos
Antibacterianos/farmacologia , Corantes Fluorescentes/farmacologia , Peptídeos/farmacologia , Estilbenos/farmacologia , Sulfonas/farmacologia , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fluorescência , Corantes Fluorescentes/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/química , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Estrutura Quaternária de Proteína , Estilbenos/química , Sulfonas/química
11.
J Am Chem Soc ; 141(40): 16108-16116, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31509694

RESUMO

Three dimensional (3D) supramolecules with giant cavities are attractive due to their wide range of applications. Herein, we used pentatopic terpyridine ligands with three types of coordination moieties to assemble two giant supramolecular hexagonal prisms with a molecular weight up to 42 608 and 43 569 Da, respectively. Within the prisms, two double-rimmed Kandinsky Circles serve as the base surfaces as well as the templates for assisting the self-sorting during the self-assembly. Additionally, hierarchical self-assembly of these supramolecular prisms into tubular-like nanostructures was fully studied by scanning tunneling microscopy (STM) and small-angle X-ray scattering (SAXS). Finally, these supramolecular prisms show good antimicrobial activities against Gram-positive pathogen methicillin-resistant Staphylococcus aureus (MRSA) and Bacillus subtilis (B. subtilis).


Assuntos
Antibacterianos/síntese química , Substâncias Macromoleculares/síntese química , Compostos Organometálicos/síntese química , Piridinas/química , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Concentração Inibidora 50 , Ligantes , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Estrutura Molecular , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia
12.
Elife ; 132024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639993

RESUMO

In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.


Assuntos
Proteínas de Bactérias , Proteínas do Citoesqueleto , Ligação Proteica , Conformação Proteica , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/química , Cristalografia por Raios X , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/química , Modelos Moleculares
13.
Microbiol Spectr ; 10(3): e0141322, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35647874

RESUMO

Bacterial cell division is a complex and highly regulated process requiring the coordination of many different proteins. Despite substantial work in model organisms, our understanding of the systems regulating cell division in noncanonical organisms, including critical human pathogens, is far from complete. One such organism is Staphylococcus aureus, a spherical bacterium that lacks known cell division regulatory proteins. Recent studies on GpsB, a protein conserved within the Firmicutes phylum, have provided insight into cell division regulation in S. aureus and other related organisms. It has been revealed that GpsB coordinates cell division and cell wall synthesis in multiple species. In S. aureus, we have previously shown that GpsB directly regulates FtsZ polymerization. In this study, using Bacillus subtilis as a tool, we isolated spontaneous suppressors that abrogate the lethality of S. aureus GpsB overproduction in B. subtilis. Through characterization, we identified several residues important for the function of GpsB. Furthermore, we discovered an additional role for GpsB in wall teichoic acid (WTA) biosynthesis in S. aureus. Specifically, we show that GpsB directly interacts with the WTA export protein TarG. We also identified a region in GpsB that is crucial for this interaction. Analysis of TarG localization in S. aureus suggests that WTA machinery is part of the divisome complex. Taken together, this research illustrates how GpsB performs an essential function in S. aureus by directly linking the tightly regulated cell cycle processes of cell division and WTA-mediated cell surface decoration. IMPORTANCE Cytokinesis in bacteria involves an intricate orchestration of several key cell division proteins and other factors involved in building a robust cell envelope. Presence of teichoic acids is a signature characteristic of the Gram-positive cell wall. By characterizing the role of Staphylococcus aureus GpsB, an essential cell division protein in this organism, we have uncovered an additional role for GpsB in wall teichoic acid (WTA) biosynthesis. We show that GpsB directly interacts with TarG of the WTA export complex. We also show that this function of GpsB may be conserved in other GpsB homologs as GpsB and the WTA exporter complex follow similar localization patterns. It has been suggested that WTA acts as a molecular signal to control the activity of autolytic enzymes, especially during the separation of conjoined daughter cells. Thus, our results reveal that GpsB, in addition to playing a role in cell division, may also help coordinate WTA biogenesis.


Assuntos
Infecções Estafilocócicas , Ácidos Teicoicos , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Parede Celular/metabolismo , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/metabolismo
14.
Nat Commun ; 13(1): 4370, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902581

RESUMO

Treatment with ß-lactam antibiotics, particularly cephalosporins, is a major risk factor for Clostridioides difficile infection. These broad-spectrum antibiotics irreversibly inhibit penicillin-binding proteins (PBPs), which are serine-based enzymes that assemble the bacterial cell wall. However, C. difficile has four different PBPs (PBP1-3 and SpoVD) with various roles in growth and spore formation, and their specific links to ß-lactam resistance in this pathogen are underexplored. Here, we show that PBP2 (known to be essential for vegetative growth) is the primary bactericidal target for ß-lactams in C. difficile. PBP2 is insensitive to cephalosporin inhibition, and this appears to be the main basis for cephalosporin resistance in this organism. We determine crystal structures of C. difficile PBP2, alone and in complex with ß-lactams, revealing unique features including ligand-induced conformational changes and an active site Zn2+-binding motif that influences ß-lactam binding and protein stability. The Zn2+-binding motif is also present in C. difficile PBP3 and SpoVD (which are known to be essential for sporulation), as well as in other bacterial taxa including species living in extreme environments and the human gut. We speculate that this thiol-containing motif and its cognate Zn2+ might function as a redox sensor to regulate cell wall synthesis for survival in adverse or anaerobic environments.


Assuntos
Resistência às Cefalosporinas , Clostridioides difficile , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cefalosporinas/farmacologia , Clostridioides , Humanos , Serina , Zinco , beta-Lactamas/farmacologia
15.
Front Microbiol ; 12: 645175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34140934

RESUMO

Antibiotic stewardship is of paramount importance to limit the emergence of antibiotic-resistant bacteria in not only hospital settings, but also in animal husbandry, aquaculture, and agricultural sectors. Currently, large quantities of antibiotics are applied to treat agricultural diseases like citrus greening disease (CGD). The two commonly used antibiotics approved for this purpose are streptomycin and oxytetracycline. Although investigations are ongoing to understand how efficient this process is to control the spread of CGD, to our knowledge, there have been no studies that evaluate the effect of environmental factors such as sunlight on the efficacy of the above-mentioned antibiotics. We conducted a simple disc-diffusion assay to study the efficacy of streptomycin and oxytetracycline after exposure to sunlight for 7- or 14-day periods using Escherichia coli and Bacillus subtilis as the representative strains of Gram-negative and Gram-positive organisms, respectively. Freshly prepared discs and discs stored in the dark for 7 or 14 days served as our controls. We show that the antibiotic potential of oxytetracycline exposed to sunlight dramatically decreases over the course of 14 days against both E. coli and B. subtilis. However, the effectiveness of streptomycin was only moderately impacted by sunlight. It is important to note that antibiotics that last longer in the environment may play a deleterious role in the rise and spread of antibiotic-resistant bacteria. Further studies are needed to substantively analyze the safety and efficacy of antibiotics used for broader environmental applications.

16.
Biomed Opt Express ; 11(9): 5060-5069, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014600

RESUMO

The timely knowledge and prescription of the most suitable antibiotic to treat bacterial infections is critical for the recovery of patients battling life-threatening bacterial infections. Unfortunately, current standard-of-care approaches relies on the empiric prescription of an antibiotic, as determination of the most effective antibiotic requires multiple time-consuming steps. These steps often include culturing of the bacterium responsible for infection and subsequent antibiotic susceptibility testing. Here we introduce an optofluidic technology that allows us to capture bacterial cells efficiently and rapidly from different biological samples and use the captured cells for rapid antibiotic selection thereby bypassing the need to culture the bacterium.

17.
Adv Opt Mater ; 8(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33072491

RESUMO

Through our continuous effort in developing a new class of foldamers, we have both designed and synthesized homogenous sulfono-γ-AApeptides using tetraphenylethylene (TPE) moieties attached to the backbone as luminogenic sidechains. Based on previous crystal structures, we have found that these foldamers adopted a left-handed 414-helix. Due to the constraint of the helical scaffold, the rotation of the TPE moieties were restricted, leading to fluorescent emissive properties with high quantum yields not only at the aggregate state but also in solution. Investigation of the relationship between the structure and fluorescence behavior reveals that emission was induced by the combined effect of the aggregation-induced emission (AIE) and the rotated restriction from the backbone. Furthermore, as the packing mode of the luminogens could be precisely adjusted by the helical backbone, these foldamers were found to be circularly polarizable with relatively large luminescence dissymmetry factor (g lum). Interestingly, possessing cationic amphipathic structures similar to that of host-defense peptides (HDPs), these sulfono-γ-AApeptides were able to inhibit the growth of Gram-positive bacteria methicillin-resistant S. aureus (MRSA) through membrane interactions.

18.
mSphere ; 5(4)2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699122

RESUMO

Although many bacterial cell division factors have been uncovered over the years, evidence from recent studies points to the existence of yet-to-be-discovered factors involved in cell division regulation. Thus, it is important to identify factors and conditions that regulate cell division to obtain a better understanding of this fundamental biological process. We recently reported that in the Gram-positive organisms Bacillus subtilis and Staphylococcus aureus, increased production of YpsA resulted in cell division inhibition. In this study, we isolated spontaneous suppressor mutations to uncover critical residues of YpsA and the pathways through which YpsA may exert its function. Using this technique, we were able to isolate four unique intragenic suppressor mutations in ypsA (E55D, P79L, R111P, and G132E) that rendered the mutated YpsA nontoxic upon overproduction. We also isolated an extragenic suppressor mutation in yfhS, a gene that encodes a protein of unknown function. Subsequent analysis confirmed that cells lacking yfhS were unable to undergo filamentation in response to YpsA overproduction. We also serendipitously discovered that YfhS may play a role in cell size regulation. Finally, we provide evidence showing a mechanistic link between YpsA and YfhS.IMPORTANCEBacillus subtilis is a rod-shaped Gram-positive model organism. The factors fundamental to the maintenance of cell shape and cell division are of major interest. We show that increased expression of ypsA results in cell division inhibition and impairment of colony formation on solid medium. Colonies that do arise possess compensatory suppressor mutations. We have isolated multiple intragenic (within ypsA) mutants and an extragenic suppressor mutant. Further analysis of the extragenic suppressor mutation led to a protein of unknown function, YfhS, which appears to play a role in regulating cell size. In addition to confirming that the cell division phenotype associated with YpsA is disrupted in a yfhS-null strain, we also discovered that the cell size phenotype of the yfhS knockout mutant is abolished in a strain that also lacks ypsA This highlights a potential mechanistic link between these two proteins; however, the underlying molecular mechanism remains to be elucidated.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Divisão Celular/genética , Mutação , Fenótipo , Proteínas de Bactérias/química , Infecções Estafilocócicas/microbiologia
19.
J Vis Exp ; (153)2019 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-31814606

RESUMO

Investigations of factors influencing cell division and cell shape in bacteria are commonly performed in conjunction with high-resolution fluorescence microscopy as observations made at a population level may not truly reflect what occurs at a single cell level. Live-cell timelapse microscopy allows investigators to monitor the changes in cell division or cell morphology which provide valuable insights regarding subcellular localization of proteins and timing of gene expression, as it happens, to potentially aid in answering important biological questions. Here, we describe our protocol to monitor phenotypic changes in Bacillus subtilis and Staphylococcus aureus using a high-resolution deconvolution microscope. The objective of this report is to provide a simple and clear protocol that can be adopted by other investigators interested in conducting fluorescence microscopy experiments to study different biological processes in bacteria as well as other organisms.


Assuntos
Bacillus subtilis/citologia , Proteínas de Bactérias/análise , Microscopia de Fluorescência/métodos , Staphylococcus aureus/citologia , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Divisão Celular , Transporte Proteico , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo
20.
Cell Chem Biol ; 26(10): 1355-1364.e4, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31402316

RESUMO

Aminoglycoside antibiotics require proton motive force (PMF) for bacterial internalization. In non-respiring populations, PMF drops below the level required for drug influx, limiting the utility of aminoglycosides against strict and facultative anaerobes. We recently demonstrated that rhamnolipids (RLs), biosurfactant molecules produced by Pseudomonas aeruginosa, potentiate aminoglycoside activity against Staphylococcus aureus. Here, we demonstrate that RLs induce PMF-independent aminoglycoside uptake to restore sensitivity to otherwise tolerant persister, biofilm, small colony variant, and anaerobic populations of S. aureus. Furthermore, we show that this approach represses the rise of resistance, restores sensitivity to highly resistant clinical isolates, and is effective against other Gram-positive pathogens. Finally, while other membrane-acting agents can synergize with aminoglycosides, induction of PMF-independent uptake is uncommon, and distinct to RLs among several compounds tested. In all, small-molecule induction of PMF-independent aminoglycoside uptake circumvents phenotypic tolerance, overcomes genotypic resistance, and expands the utility of aminoglycosides against intrinsically recalcitrant bacterial populations.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Aminoglicosídeos/química , Animais , Antibacterianos/química , Linhagem Celular , Tolerância a Medicamentos , Camundongos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA