Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Therm Biol ; 110: 103371, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462885

RESUMO

Numerical simulation of magnetic nanoparticle hyperthermia for cancer treatment has been investigated in this study. The presented simulation did account for the effects of fluid flow, mass flow, and heat transfer during the MNP hyperthermia. The tumor was assumed to be a porous slab, 30% of which had been necrosed previously, with two capillaries, where magnetic nanoparticles were added into the bloodstream and distributed in the tumor by blood flow through capillaries. Fluid flow, mass transfer by capillaries, and interstitial tissues have been coupled in this study. Furthermore, tumor tissue damage has been calculated using a thermal damage indicator. The goal of this research is to find an optimum injection duration and exposure time in order to maximize hyperthermia treatment effectiveness using the BOBYQA optimization method. At the end of the 1-h time hyperthermia treatment, most of the non-necrotic tissue of the tumor were damaged. Moreover, the fraction of damaged tissue increased to more than 90% in some parts of the tumor. Results of this study indicate that MNP hyperthermia with the proposed setup can effectively damage the tumor in just one session, making it more susceptible to complementary therapies such as radiotherapy or chemotherapy.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Humanos , Nanopartículas de Magnetita/uso terapêutico , Temperatura Alta , Hipertermia
2.
Comput Biol Med ; 157: 106771, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924733

RESUMO

In this study, simulation of magnetic nanoparticle hyperthermia is performed on a 3D tumor model constructed based on a CT image of a tumor. In the first step, magnetic nanoparticles are injected into two points of the tumor tissue with the same parameters. Results show that temperature profiles in the vicinity of the injection points are not similar due to the presence of blood capillaries. Therefore, the effects of using dissimilar injection parameters for the two injection points on the heating pattern and damage fraction of the tumor are investigated. The results demonstrate that using dissimilar values for injection parameters such as injection rate, injection time, and nanofluid volume fraction is a way to achieve a higher damage fraction of the tumor cells, but, the asynchronous injections strategy does not lead to more significant damage to the tumor. None of the cases showed significant improvement in the uniformity of the temperature distribution, suggesting that conducting injections under the same conditions is the best way to create an almost uniform temperature profile. The numerical simulation validation results also advocate the accuracy of the model used in this study. This research can serve as a guide for designing parameters for future studies.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Capilares , Modelos Teóricos , Simulação por Computador
3.
J Biotechnol ; 367: 71-80, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37028560

RESUMO

In this work, a magnetic nanobiocomposite scaffold based on carboxymethylcellulose (CMC) hydrogel, silk fibroin (SF), and magnetite nanoparticles was fabricated. The structural properties of this new magnetic nanobiocomposite were characterized by various analyses such as FT-IR, XRD, EDX, FE-SEM, TGA and VSM. According to the particle size histogram, most of the particles were between 55 and 77 nm and the value of saturation magnetization of this nanobiocomposite was reported 41.65 emu.g- 1. Hemolysis and MTT tests showed that the designed magnetic nanobiocomposite was compatible with the blood. In addition, the viability percentage of HEK293T normal cells did not change significantly, and the proliferation rate of BT549 cancer cells decreased in its vicinity. EC50 values for HEK293T normal cells after 48 h and 72 h were 3958 and 2566, respectively. Also, these values for BT549 cancer cells after 48 h and 72 h were 0.4545 and 0.9967, respectively. The efficiency of fabricated magnetic nanobiocomposite was appraised in a magnetic fluid hyperthermia manner. The specific absorption rate (SAR) of 69 W/g (for the 1 mg/mL sample at 200 kHz) was measured under the alternating magnetic field (AMF).


Assuntos
Fibroínas , Hipertermia Induzida , Neoplasias , Humanos , Fibroínas/farmacologia , Fibroínas/química , Hidrogéis , Carboximetilcelulose Sódica/farmacologia , Carboximetilcelulose Sódica/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células HEK293 , Fenômenos Magnéticos , Neoplasias/tratamento farmacológico
4.
Nanoscale Adv ; 5(1): 153-159, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36605797

RESUMO

In this study, an efficient nanobiocomposite based on graphene oxide (GO), carboxymethylcellulose (CMC) hydrogel, silk fibroin (SF), and Fe3O4 nanoparticles was synthesized. For this purpose and in order to provide a suitable scaffold for the nanobiocomposite, GO was functionalized with a CMC hydrogel via covalent bonding. In the next step, SF was added to the synthesized structure to increase biocompatibility and biodegradability. Fe3O4 was added into the structure by an in situ process and the GO-CMC hydrogel/SF/Fe3O4 nanobiocomposite was synthesized. The synthesized structure was evaluated in terms of toxicity and hemocompatibility and finally, it was used in the hyperthermia technique. This nanocomposite did not destroy healthy HEK293T cells after 48 h and 72 h, while it did annihilate BT549 cancer cells. The GO-CMC hydrogel/SF/Fe3O4 nanobiocomposite has EC50 values of 0.01466 and 0.1415 against HEK293T normal cells and BT549 cancer cells, respectively (after 72 h). The nanocomposite has good potential in hyperthermia applications and at a concentration and a frequency of 1 mg mL-1 and 400 kHz it has a SAR of 67.7 W g-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA