Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379268

RESUMO

Monitoring nitrate ions is essential in agriculture, food industry, health sector and aquatic ecosystem. We show that a conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), can be used for nitrate sensing through a process in which nitrate ion uptake leads to oxidation of PEDOT and change of its optical properties. In this study, a new platform is developed in which a single-mode fibre coated at the tip with PEDOT is used for nitrate sensing. A crucial step towards this goal is introduction of carbonate exposure to chemically reduced PEDOT to a baseline value. The proposed platform exhibits the change in optical behaviour of the PEDOT layer at the tip of the fibre as it undergoes chemical oxidation and reduction (redox). The change in optical properties due to redox switching varies with the intensity of light back reflected by the fibre coated with PEDOT. The proposed platform during oxidation demonstrates linear response for the uptake of nitrate ions in concentrations ranging between 0.2 and 40 parts per million (ppm), with a regression coefficient R2=0.97 and a detection limit of 6.7 ppm. The procedure for redox switching is repeatable as the back reflection light intensity reaches ±1.5% of the initial value after reduction.

2.
Langmuir ; 35(36): 11679-11689, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31407904

RESUMO

Manipulating the surface properties of materials via the application of coatings is a widely used strategy to achieve desired interfacial interactions, implicitly assuming that the interfacial forces of coated samples are determined exclusively by the surface properties of the coatings. However, interfacial interactions between materials and their environments operate over finite length scales. Thus, the question addressed in this study is whether interactions associated with bulk substrate materials could act through thin coatings or, conversely, how thick a coating needs to be to completely screen subsurface forces contributed by underlying substrates. Plasma polymer layers were deposited on silicon wafer substrates from ethanol vapor, with identical chemical composition, ultrasmooth surfaces, and varying thicknesses. Using colloid-probe atomic force microscopy, electrical double-layer forces were determined in solutions of various ionic strengths and fitted using the Derjaguin-Landau-Verwey-Overbeek theory. For the thicker ethanol plasma polymers, the fitted surface potentials reflected the presence of surface carboxylate groups and were invariant with thickness. In contrast, for coatings <18 nm thick, the surface potentials increased steadily with decreasing film thickness; the measured electrical double-layer forces contained contributions from both the coating and the substrate. Theoretical calculations were in agreement with this model. Thus, our observations indicate that the higher surface potential of the underlying SiO2 surface can influence the interactions between a colloid particle and the multilayer structure if coatings are sufficiently thin. Such superposition needs to be factored into the design of coatings aimed at the control of material interactions via surface forces.

3.
Langmuir ; 32(2): 619-25, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26694744

RESUMO

Irrespective of the technology, we now rely on touch to interact with devices such as smart phones, tablet computers, and control panels. As a result, touch screen technologies are frequently in contact with body grease. Hence, surface deposition arises from localized inhomogeneous finger-derived contaminants adhering to a surface, impairing the visual/optical experience of the user. In this study, we examined the contamination itself in order to understand its static and dynamic behavior with respect to deposition and cleaning. A process for standardized deposition of fingerprints was developed. Artificial sebum was used in this process to enable reproducibility for quantitative analysis. Fingerprint contamination was shown to be hygroscopic and to possess temperature- and shear-dependent properties. These results have implications for the design of easily cleanable surfaces.


Assuntos
Dermatoglifia , Ácidos Graxos/química , Lipídeos/química , Sebo/química , Materiais Biomiméticos/química , Humanos , Microscopia Eletrônica de Varredura , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Reologia , Sais/química , Propriedades de Superfície , Tato , Água/química , Molhabilidade
4.
Phys Chem Chem Phys ; 18(29): 19765-72, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27385513

RESUMO

Semiconductor (SC) quantum dots (QDs) have recently been fabricated by both chemical and plasma techniques for specific absorption and emission of light. Their optical properties are governed by the size of the QD and the chemistry of any passivation at their surface. Here, we decouple the effects of confinement and passivation by utilising DC magnetron sputtering to fabricate SC QDs in a perfluorinated polyether oil. Very high band gaps are observed for fluorinated QDs with increasing levels of quantum confinement (from 4.2 to 4.6 eV for Si, and 2.5 to 3 eV for Ge), with a shift down to 3.4 eV for Si when oxygen is introduced to the passivation layer. In contrast, the fluorinated Si QDs display a constant UV photoluminescence (3.8 eV) irrespective of size. This ability to tune the size and passivation independently opens a new opportunity to extending the use of simple semiconductor QDs.

5.
Nat Mater ; 13(2): 190-4, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24317188

RESUMO

Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being suitable for thermoelectric applications. We measure the thermoelectric properties of various poly(3,4-ethylenedioxythiophene) samples, and observe a marked increase in the Seebeck coefficient when the electrical conductivity is enhanced through molecular organization. This initiates the transition from a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics.

6.
Langmuir ; 30(8): 2093-100, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24548170

RESUMO

Surface force measurements between titania surfaces in electrolyte solutions have previously revealed an unexplained long-range repulsive force at high pH, not described by Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Here, the surface forces between titania surfaces produced by atomic layer deposition (ALD) and cleaned using a variety of methods have been measured to determine the influence of the cleaning protocol on the measured forces and test the hypothesis that water plasma cleaning of the surface results in non-DLVO forces at high pH. For argon plasma and water plasma cleaned surfaces, a diffuse double layer repulsion and van der Waals attraction is observed near the isoelectric point. At high pH, the force remained repulsive up until contact, and no van der Waals attraction or adhesion was observed. Differences in the measured forces are explained by modification of the surface chemistry during cleaning, which alters the density of charged groups on the surface, but this cannot explain the observed disagreement with DLVO theory at high pH.

7.
ACS Appl Bio Mater ; 6(11): 4662-4671, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37902811

RESUMO

Recently, transdermal monitoring and drug delivery have gained much interest, owing to the introduction of the minimally invasive microneedle (MN) device. The advancement of electroactive MNs electrically assisted in the capture of biomarkers or the triggering of drug release. Recent works have combined conducting polymers (CPs) onto MNs owing to the soft nature of the polymers and their tunable ionic and electronic conductivity. Though CPs are reported to work safely in the body, their biocompatibility in the skin has been insufficiently investigated. Furthermore, during electrical biasing of CPs, they undergo reduction or oxidation, which in practical terms leads to release/exchange of ions, which could pose biological risks. This work investigates the viability and proliferation of skin cells upon exposure to an electrochemically biased MN pair comprising two differently doped poly(3,4-ethylenedioxy-thiophene) (PEDOT) polymers that have been designed for skin sampling use. The impact of biasing on human keratinocytes and dermal fibroblasts was determined at different initial cell seeding densities and incubation periods. Indirect testing was employed, whereby the culture media was first exposed to PEDOTs prior to the addition of this extract to cells. In all conditions, both unbiased and biased PEDOT extracts showed no cytotoxicity, but the viability and proliferation of cells cultured at a low cell seeding density were lower than those of the control after 48 h of incubation.


Assuntos
Queratinócitos , Polímeros , Humanos , Sobrevivência Celular , Pele
8.
J Mater Chem B ; 11(22): 5021-5031, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226634

RESUMO

Skin sampling is a diagnostic procedure based on the analysis of extracted skin tissues and/or the observation of biomarkers in bodily fluids. Sampling using microneedles (MNs) that minimize invasiveness is gaining attention over conventional biopsy/blood lancet. In this study, new MNs for electrochemically assisted skin sampling are reported, specifically tailored for combined skin tissue biopsy and interstitial fluid (ISF) extraction. To overcome risks associated with using metal MNs, a highly electroactive, mechanically flexible, and biocompatible organic conducting polymer (CP) coated onto plastic is chosen as an alternative. Two different variants of doped poly(3,4-ethylenedioxythiophene) are coated on polymethyl methacrylate and used in combination as a MN pair with subsequent testing via a variety of electrochemical techniques to (i) give real-time information of the MN penetration depth into the skin, and (ii) yield new information on various salts present in the ISF. The MN skin sampler shows the ability to extract ions from the hydrated excised skin as a step towards in vivo ISF extraction. The presence of ions was analyzed using X-ray photoelectron spectroscopy. This added chemical information in conjunction with the existing biomarker analysis increases opportunity for disease/condition detection. For example, in the case of psoriasis, information about salt in the skin is invaluable in combination with pathogenic gene expression for diagnosis.


Assuntos
Agulhas , Polímeros , Compostos Bicíclicos Heterocíclicos com Pontes , Plásticos
9.
Chem Commun (Camb) ; 58(29): 4553-4560, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332350

RESUMO

Now in their 5th decade of research and development, conducting polymers represent an interesting class of materials to underpin new wearable or conformable electronic devices. Of particular interest over the years has been poly(3,4-ethylenedioxythiophene), commonly known as PEDOT, owing to its ease of fabrication and relative stability under typical ambient conditions. Understanding PEDOT from a variety of fundamental and applied perspectives is important for how it can be enhanced, modified, functionalised, and/or processed for use in commercial products. This feature article highlights the contribution of the research team at the University of South Australia led by Professor Evans, and their collaborators, putting their work into the broader context of conducting polymer research and application. This review focuses on the vapour synthesis of PEDOT doped with the tosylate anion, the benefits of controlling its morphology/structure during synthesis, and its application as an active material interacting with secondary anions in sensors, energy devices and drug delivery.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros/química
10.
Nanoscale Adv ; 4(3): 733-741, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131813

RESUMO

Water is ubiquitous in life - from making up the majority of the Earth's surface (by area) to over half of the human body (by weight). It stands to reason that materials are likely to contact water at some point during their lifetime. In the specific case of sensors however, there is a need to consider materials that display stable function while immersed in aqueous applications. This mini-review will discuss the most recent advances (2018 to 2021) in the application of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) in aqueous environments. At its heart, the use of PEDOT in aqueous applications relies on nanoscale understanding and/or nanoengineered structures and properties. This enables their use in water-based settings such as within the human body or buried in agricultural soils.

11.
Commun Chem ; 3(1): 153, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36703334

RESUMO

Conducting polymers display a range of interesting properties, from electrical conduction to tunable optical absorption and mechanical flexibility, to name but a few. Their properties arise from positive charges (carbocations) on their conjugated backbone that are stabilised by counterions doped in the polymer matrix. In this research we report hydrolysis of these carbocations when poly(3,4-ethylenedioxy thiophene) is exposed to 1 mM aqueous salt solutions. Remarkably, two classes of anion interactions are revealed; anions that oxidise PEDOT via a doping process, and those that facilitate the SN1 hydrolysis of the carbocation to create hydroxylated PEDOT. A pKa of 6.4 for the conjugate acid of the anion approximately marks the transition between chemical oxidation and hydrolysis. PEDOT can be cycled between hydrolysis and oxidation by alternating exposure to different salt solutions. This has ramifications for using doped conducting polymers in aqueous environments (such as sensing, energy storage and biomedical devices).

12.
J Colloid Interface Sci ; 580: 690-699, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32712475

RESUMO

Thin polymeric coatings are commonly used for altering surface properties and modulating the interfacial performance of materials. Possible contributions from the substrate to the interfacial forces and effects are, however, usually ignored and are not well understood, nor is it established how the coating thickness modulates and eventually eliminates contributions from substrates to the van der Waals (vdW) interfacial force. In this study we quantified, by colloid-probe atomic force microscope (AFM) and by theoretical calculations, the interfacial vdW contributions from substrates acting through ethanol plasma polymer (EtOHpp) coatings of a range of thicknesses on Au and Si bulk materials. In approach force curves against EtOHpp-coated Au substrates the magnitude of the vdW force decreased as the EtOHpp coating thickness increased to 18 nm and then plateaued with further increases in coating thickness, providing direct evidence for a contribution to the total interfacial vdW force from the Au substrate acting through thin coatings. The experimental observations accord with theoretical calculations of the thickness dependence of Hamaker coefficients derived from rigorous simulation using the Lifshitz theory. In addition, the measured forces agree well with theoretical predictions including correction for finite roughness. Thus, our experimental and theoretical results establish how the thickness of polymer thin film coatings modulates the total interfacial vdW force and how this can be used to tune the net vdW force so as to either contain a large substrate contribution or arise predominantly from the polymeric overlayer. Our findings enable rational design of coating thickness to tailor interfacial interactions and material performance.

13.
ACS Omega ; 4(26): 21818-21826, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31891059

RESUMO

Vapor phase polymerization (VPP) is used to fabricate a series of tosylate-doped poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes on carbon paper. The series of VPP PEDOT/tosylate coatings has varying levels of crystallinity and electrical conductivity because of the use (or not) of nonionic triblock copolymers in the oxidant solution during synthesis. As a result, the impact of the structure on charge storage capacity is investigated using tetra-n-butylammonium hexafluorophosphate (0.1 M in acetonitrile). The ability to insert anions, and hence store charge, of the VPP PEDOT/tosylate is inversely related to its electrical conductivity. In the case of no nonionic triblock copolymer employed, the VPP PEDOT/tosylate achieves electrochemical doping levels of 1.0 charge per monomer or greater (≥100% doping level). Such high doping levels are demonstrated to be plausible by molecular dynamics simulations and density functional theory calculations. Experiments show that this high doping level is attainable when the PEDOT structure is weakly crystalline with (relatively) large crystallite domains.

14.
ACS Omega ; 3(10): 12679-12687, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457995

RESUMO

The effect of thermal treatment on the structure and electrical/optical properties of vapor phase-polymerized poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:Tos) and polypyrrole:tosylate (PPy:Tos) polymer films was investigated. Thermal treatment was applied postpolymerization but prior to washing the embedded oxidant layer out of the polymer film. Structural and chemical changes arising from the treatment were studied in the context of their conductive and electrochromic behavior. Spectroscopic analysis indicated a rise in the doping levels of both conductive polymers when exposed to thermal treatment. Additionally, an increase in the film thickness was recorded after the oxidant and other unbound species were removed from the polymer layer using an ethanol rinse. As such, a strong indication that polymerization continued even in the absence of (external) monomer vapor was present. This film thickness increase was most pronounced for PPy:Tos but also present in the PEDOT:Tos film. Heat-treated films exhibited enhanced cohesion, making them more robust and therefore increasing the viability for the material to be used in the optoelectronics area. This robustness, due to additional (cross-linking) oligomer growth, came at the expense of lower conductivity relative to their untreated counterparts.

15.
J Polym Sci B Polym Phys ; 56(1): 97-104, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29242675

RESUMO

Owing to changes in their chemistry and structure, polymers can be fabricated to demonstrate vastly different electrical conductivities over many orders of magnitude. At the high end of conductivity is the class of conducting polymers, which are ideal candidates for many applications in low-cost electronics. Here, we report the influence of the nature of the doping anion at high doping levels within the semi-metallic conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) on its electronic transport properties. Hall effect measurements on a variety of PEDOT samples show that the choice of doping anion can lead to an order of magnitude enhancement in the charge carrier mobility > 3 cm2/Vs at conductivities approaching 3000 S/cm under ambient conditions. Grazing Incidence Wide Angle X-ray Scattering, Density Functional Theory calculations, and Molecular Dynamics simulations indicate that the chosen doping anion modifies the way PEDOT chains stack together. This link between structure and specific anion doping at high doping levels has ramifications for the fabrication of conducting polymer-based devices. © 2017 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 97-104.

16.
ACS Appl Mater Interfaces ; 9(1): 65-70, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28030759

RESUMO

Conducting polymers represent a field of materials innovation that bridges the properties of metals (electrical conduction) with those of traditional polymers (mechanical flexibility). Although electronic properties have been studied, minimal attention is given to their mechanical properties such as tensile strength. This study presents macroscopic wires made from the vapor phase polymerization of poly(3,4-ethylenedioxythiophene) using triblock copolymers as a molecular template. These macroscopic wires are conductive (up to 5 × 104 S/m), and possess tensile properties (Young's modulus ∼1.1 GPa; tensile strength ∼90 MPa) comparable to commercially available polymers (Nylon-6 and poly(methyl methacrylate)), without need for nonconductive mechanical fillers.

17.
Sci Rep ; 7(1): 16581, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29185502

RESUMO

Nitrogen (N) as a nutrient, in the form of nitrate (NO3-), is essential for plant growth. Chemical fertilizers are used to increase crop yields, but overuse can lead to forms of environmental pollution necessitating methods to detect and monitor the level of NO3- in-situ in agricultural soils. Herein we report for the first time the NO3- selectivity of the inherently conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT). This selectivity occurs when PEDOT thin films are exposed to an aqueous environment containing not only NO3-, but a mixture of other ions present in concentrations (ppm) typical of real agricultural soil. The PEDOT sensitivity to absorb NO3- from solution is determined to be <1 ppm.

18.
J Phys Chem B ; 110(39): 19507-14, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17004812

RESUMO

The cantilever technique for the measurement of film stress on both macroscopic and microscopic cantilevers is validated, then applied to the experimental determination of film stress induced by the adsorption of a monolayer of iodine onto a gold substrate. A model is proposed that relates the change in the interatom potential upon chemisorption of iodine onto gold to the measured film stress. Excellent agreement is found with the experimentally determined value. This result gives insight into the origins of film stress that is observed in all thin film and coating applications.

19.
J Phys Chem B ; 110(11): 5450-61, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16539483

RESUMO

Cantilever beams, both microscopic and macroscopic, are used as sensors in a great variety of applications. An optical lever system is commonly employed to determine the deflection and thereby the profile of the cantilever under load. The sensitivity of the optical lever must be calibrated, and this is usually achieved by application of a known load or deflection to the free end of the cantilever. When the sensing operation involves a different type of load or a combination of types of loadings, the calibration and the deflection values derived from it become invalid. Here we develop a master equation that permits the true deflection of the cantilever to be obtained simply from the measurement of the apparent deflection for uniformly distributed loadings and end-moment loadings. These loadings are relevant to the uniform adsorption or application of material to the cantilever or the application of a surface stress to the cantilever and should assist experimentalists using the optical lever, such as in the atomic force microscope, to measure cantilever deflections in a great variety of sensing applications. We then apply this treatment to the experimental evaluation of surface stress. Three forms of Stoney's equation that relate the apparent deflection to the surface stress, which is valid for both macroscopic and microscopic experiments, are derived. Analysis of the errors arising from incorrect modeling of the loading conditions of the cantilever currently applied in experiments is also presented. It is shown that the reported literature values for surface stress in microscopic experiments are typically 9% smaller than their true value. For macroscopic experiments, we demonstrate that the added mass of the film or coating generally dominates the measured deflection and must be accounted for accurately if surface stress measurements are to be made. Further, the reported measurements generally use a form of Stoney's equation that is in error, resulting in an overestimation of surface stress by a factor >5.

20.
ACS Appl Mater Interfaces ; 8(28): 18534-9, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27351355

RESUMO

Human interaction with touch screens requires physical touch and hence results in contamination of these surfaces, resulting in the necessity of cleaning. In this study we discuss the three bodies of this problem and how each component contributes and can be controlled. Utilizing a standard fingerprint machine and a standard cleanability test, this study examines the influence of parameters such as the wiping speed and pressure, the material and surface area of the cloths, and the surface energy of the contaminated surfaces. It was shown that fingerprint contamination undergoes shear banding and hence is not easily removed. The degree of material removal depends on the position of the shear plane, which is influenced by surface energies and shear rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA