Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Thorax ; 78(5): 459-466, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35361687

RESUMO

BACKGROUND: Ambient air pollution is thought to contribute to increased risk of COVID-19, but the evidence is controversial. OBJECTIVE: To evaluate the associations between short-term variations in outdoor concentrations of ambient air pollution and COVID-19 emergency department (ED) visits. METHODS: We conducted a case-crossover study of 78 255 COVID-19 ED visits in Alberta and Ontario, Canada between 1 March 2020 and 31 March 2021. Daily air pollution data (ie, fine particulate matter with diameter less than 2.5 µm (PM2.5), nitrogen dioxide (NO2) and ozone were assigned to individual case of COVID-19 in 10 km × 10 km grid resolution. Conditional logistic regression was used to estimate associations between air pollution and ED visits for COVID-19. RESULTS: Cumulative ambient exposure over 0-3 days to PM2.5 (OR 1.010; 95% CI 1.004 to 1.015, per 6.2 µg/m3) and NO2 (OR 1.021; 95% CI 1.015 to 1.028, per 7.7 ppb) concentrations were associated with ED visits for COVID-19. We found that the association between PM2.5 and COVID-19 ED visits was stronger among those hospitalised following an ED visit, as a measure of disease severity, (OR 1.023; 95% CI 1.015 to 1.031) compared with those not hospitalised (OR 0.992; 95% CI 0.980 to 1.004) (p value for effect modification=0.04). CONCLUSIONS: We found associations between short-term exposure to ambient air pollutants and COVID-19 ED visits. Exposure to air pollution may also lead to more severe COVID-19 disease.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Estudos Cross-Over , Dióxido de Nitrogênio/toxicidade , Dióxido de Nitrogênio/análise , COVID-19/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Ontário/epidemiologia , Serviço Hospitalar de Emergência , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
2.
Am J Respir Crit Care Med ; 204(2): 168-177, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798018

RESUMO

Rationale: Evidence linking outdoor air pollution with coronavirus disease (COVID-19) incidence and mortality is largely based on ecological comparisons between regions that may differ in factors such as access to testing and control measures that may not be independent of air pollution concentrations. Moreover, studies have yet to focus on key mechanisms of air pollution toxicity such as oxidative stress. Objectives: To conduct a within-city analysis of spatial variations in COVID-19 incidence and the estimated generation of reactive oxygen species (ROS) in lung lining fluid attributable to fine particulate matter (particulate matter with an aerodynamic diameter ⩽2.5 µm [PM2.5]). Methods: Sporadic and outbreak-related COVID-19 case counts, testing data, population data, and sociodemographic data for 140 neighborhoods were obtained from the City of Toronto. ROS estimates were based on a mathematical model of ROS generation in lung lining fluid in response to iron and copper in PM2.5. Spatial variations in long-term average ROS were predicted using a land-use regression model derived from measurements of iron and copper in PM2.5. Data were analyzed using negative binomial regression models adjusting for covariates identified using a directed acyclic graph and accounting for spatial autocorrelation. Measurements and Main Results: A significant positive association was observed between neighborhood-level ROS and COVID-19 incidence (incidence rate ratio = 1.07; 95% confidence interval, 1.01-1.15 per interquartile range ROS). Effect modification by neighborhood-level measures of racialized group membership and socioeconomic status was also identified. Conclusions: Examination of neighborhood characteristics associated with COVID-19 incidence can identify inequalities and generate hypotheses for future studies.


Assuntos
Poluição do Ar/análise , COVID-19/metabolismo , Modelos Estatísticos , Espécies Reativas de Oxigênio/análise , COVID-19/epidemiologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Ontário/epidemiologia , SARS-CoV-2
3.
Environ Sci Technol ; 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328323

RESUMO

Subway PM2.5 can be substantially sourced from the operation of the system itself. Improvements in subway air quality may be possible by examining the potential to reduce these emissions. To this end, PM2.5 was measured on the trains and station platforms of the Toronto subway system. A comparison with previously published data for this system reveals significant changes in below ground platform PM2.5. A reduction of nearly one-third (ratio (95% CI): 0.69 (0.63, 0.75)) in PM2.5 from 2011 to 2018 appears to have resulted from a complete modernization of the rolling stock on one subway line. In contrast, below ground platform PM2.5 for another line increased by a factor of 1.48 (95% CI; 1.42, 1.56). This increase may be related to an increase in emergency brake applications, the resolution of which coincided with a large decrease in PM2.5 concentrations on that line. Finally, platform PM2.5 in two newly opened stations attained, within one year of operation, typical concentrations of the neighboring platforms installed in 1963. Combined, these findings suggest that the production of platform PM2.5 is localized and hence largely freshly emitted. Further, PM2.5 changed across this subway system due to changes in its operation and rolling stock. Thus, similar interventions applied intentionally may prove to be equally effective in reducing PM2.5. Moreover, establishing a network of platform PM2.5 monitors is recommended to monitor ongoing improvements and identify impacts of future system changes on subway air quality. This would result in a better understanding of the relationship between the operations and air quality of subways.

4.
Environ Sci Technol ; 55(14): 9750-9760, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34241996

RESUMO

Fine particulate air pollution (PM2.5) is a leading contributor to the overall global burden of disease. Traditionally, outdoor PM2.5 has been characterized using mass concentrations which treat all particles as equally harmful. Oxidative potential (OP) (per µg) and oxidative burden (OB) (per m3) are complementary metrics that estimate the ability of PM2.5 to cause oxidative stress, which is an important mechanism in air pollution health effects. Here, we provide the first national estimates of spatial variations in multiple measures (glutathione, ascorbate, and dithiothreitol depletion) of annual median outdoor PM2.5 OB across Canada. To do this, we combined a large database of ground-level OB measurements collected monthly prospectively across Canada for 2 years (2016-2018) with PM2.5 components estimated using a chemical transport model (GEOS-Chem) and satellite aerosol observations. Our predicted ground-level OB values of all three methods were consistent with ground-level observations (cross-validation R2 = 0.63-0.74). We found that forested regions and urban areas had the highest OB, predicted primarily by black carbon and organic carbon from wildfires and transportation sources. Importantly, the dominant components associated with OB were different than those contributing to PM2.5 mass concentrations (secondary inorganic aerosol); thus, OB metrics may better indicate harmful components and sources on health than the bulk PM2.5 mass, reinforcing that OB estimates can complement the existing PM2.5 data in future national-level epidemiological studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Canadá , Monitoramento Ambiental , Humanos , Estresse Oxidativo , Material Particulado/análise
5.
Environ Res ; 196: 111010, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33716024

RESUMO

A spatiotemporal land use regression (LUR) model optimized to predict nitrogen dioxide (NO2) concentrations obtained from on-road, mobile measurements collected in 2015-16 was independently evaluated using concentrations observed at multiple sites across Toronto, Canada, obtained more than ten years earlier. This spatiotemporal LUR modelling approach improves upon estimates of historical NO2 concentrations derived from the previously used method of back-extrapolation. The optimal spatiotemporal LUR model (R2 = 0.71 for prediction of NO2 data in 2002 and 2004) uses daily average NO2 concentrations observed at multiple long-term monitoring sites and hourly average wind speed recorded at a single site, along with spatial predictors based on geographical information system data, to estimate NO2 levels for time periods outside of those used for model development. While the model tended to underestimate samplers located close to the roadway, it showed great accuracy when estimating samplers located beyond 100 m which are probably more relevant for exposure at residences. This study shows that spatiotemporal LUR models developed from strategic, multi-day (30 days in 3 different months) mobile measurements can enhance LUR model's ability to estimate long-term, intra-urban NO2 patterns. Furthermore, the mobile sampling strategy enabled this new LUR model to cover a larger domain of Toronto and outlying suburban communities, thereby increasing the potential population for future epidemiological studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Canadá , Monitoramento Ambiental , Modelos Teóricos , Dióxido de Nitrogênio/análise , Material Particulado/análise
6.
Environ Res ; 191: 110052, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32860780

RESUMO

BACKGROUND: Ambient fine particulate matter (PM2.5) is associated with a wide range of acute and chronic health effects, including increased risk of respiratory infection. However, evidence specifically related to novel coronavirus disease (COVID-19) is limited. METHODS: COVID-19 case counts for 111 Canadian health regions were obtained from the COVID-19 Canada Open Data portal. Annual PM2.5 data for 2000-2016 were estimated from a national exposure surface based on remote sensing, chemical transport modelling and ground observations, and minimum and maximum temperature data for 2000-2015 were based on a national interpolated surface derived from thin-plate smoothing splines. Population counts and sociodemographic data by health region were obtained from the 2016 census, and health data (self-rated health and prevalence of smoking, obesity, and selected chronic diseases) by health region, were obtained from the Canadian Community Health Survey. Data on total number of COVID-19 tests and changes in mobility comparing post-vs. pre-introduction of social distancing measures were available by province. Data were analyzed using negative binomial regression models. RESULTS: After controlling for province, temperature, demographic and health characteristics and days since peak incidence by health region, long-term PM2.5 exposure exhibited a positive association with COVID-19 incidence (incidence rate ratio 1.07, 95% confidence interval 0.97-1.18 per µg/m3). This association was larger in magnitude and statistically significant in analyses excluding provinces that reported cases only for aggregated health regions, excluding health regions with less than median population density, and restricted to the most highly affected provinces (Quebec and Ontario). CONCLUSIONS: We observed a positive association between COVID-19 incidence and long-term PM2.5 exposure in Canadian health regions. The association was larger in magnitude and statistically significant in more highly affected health regions and those with potentially less exposure measurement error. While our results generate hypotheses for further testing, they should be interpreted with caution and require further examination using study designs less prone to bias.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Infecções por Coronavirus , Coronavirus , Pandemias , Pneumonia Viral , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Betacoronavirus , COVID-19 , Exposição Ambiental/análise , Humanos , Incidência , Ontário , Material Particulado/análise , Material Particulado/toxicidade , Quebeque , SARS-CoV-2
7.
Occup Environ Med ; 76(10): 758-764, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31439688

RESUMO

OBJECTIVES: Experimental studies suggested that bisphenol A (BPA) exposure increased the risk of metabolic syndrome (MetS) through the mechanism of insulin resistance. All previous epidemiological studies of BPA and MetS were cross-sectional studies, and their findings were mixed. This study aims to provide further evidence on the association between urinary BPA and risk of MetS using a prospective cohort study in China. METHODS: The study population was from the Shenzhen Night shift workers' cohort. A total of 1227 male workers were recruited from the baseline survey in 2013 and then followed until 2017. Modified Adult Treatment Panel III criteria were used to identify the cases of MetS. Urinary BPA concentration was assessed using high-performance liquid chromatography-tandem mass spectrometry, and it was categorised into three subgroups by tertiles to obtain the adjusted HR (aHR) and 95% CI using Cox proportional hazard model. RESULTS: During 4 years of follow-up, 200 subjects developed MetS. Compared with the lowest urinary BPA subgroup, a weakly increased risk of MetS was suggested among those with the middle (aHR=1.19, 95% CI 0.87 to 1.63) and high level of urinary BPA (aHR=1.16, 95% CI 0.84 to 1.59); however, the significant association with MetS was restricted primarily to the smokers, showing a positive gradient with urinary BPA (middle level: aHR=2.40, 95% CI 1.13 to 5.08; high level: aHR=2.87, 95% CI 1.38 to 5.98; p trend=0.010). CONCLUSION: This prospective cohort study provided further evidence that exposure to BPA may increase the risk of MetS, and this association was further positively modified by cigarette smoking.


Assuntos
Compostos Benzidrílicos/urina , Síndrome Metabólica/epidemiologia , Fenóis/urina , Adulto , China/epidemiologia , Fumar Cigarros , Estudos de Coortes , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
8.
Occup Environ Med ; 76(2): 83-89, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30514747

RESUMO

OBJECTIVES: Accumulated evidence implies that night shift work may trigger liver dysfunction. Non-alcoholic fatty liver (NAFL) is suggested to be a necessary mediator in this process. This study aimed to examine the relationship between night shift work and elevated level of alanine transaminase (e-ALT) of workers and investigate the potential mediation effect of NAFL. METHODS: This study included all male workers from the baseline survey of a cohort of night shift workers. Information on demographics, lifestyle and lifetime working schedule was collected by face-to-face interview. Liver sonography was used to identify NAFL cases. Serum ALT level was detected by an automatic biochemical analyser. e-ALT was defined as ALT >40 U/L. Logistic regression models were used to evaluate ORs, and mediation analysis was employed to examine the mediation effect. RESULTS: Among 4740 male workers, 39.5% were night shift workers. Night shift workers had an increased risk of e-ALT (OR, 1.19, 95% CI 1.00 to 1.42). With the increase in night shift years, the OR of e-ALT increased from 1.03 (95% CI 0.77 to 1.36) to 1.60 (95% CI 1.08 to 2.39) among workers without NAFL. A similar trend was not found among workers with NAFL. In addition, no significant mediation effect of NAFL in the association between night shift work and e-ALT was found. CONCLUSIONS: Night shift work is positively associated with abnormal liver function, in particular among workers without NAFL. Shift work involving circadian disruption is likely to exert a direct effect on liver dysfunction rather than rely on the mediation effect of NAFL.


Assuntos
Fígado Gorduroso/diagnóstico por imagem , Fígado Gorduroso/epidemiologia , Jornada de Trabalho em Turnos , Tolerância ao Trabalho Programado , Adulto , Alanina Transaminase/sangue , China/epidemiologia , Fígado Gorduroso/sangue , Humanos , Estilo de Vida , Modelos Logísticos , Masculino , Estudos Prospectivos , Fatores de Risco , Inquéritos e Questionários , Ultrassonografia , Adulto Jovem
9.
Environ Sci Technol ; 52(16): 9495-9504, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30021437

RESUMO

A daily integrated emission factor (EF) method was applied to data from three near-road monitoring sites to identify variables that impact traffic related pollutant concentrations in the near-road environment. The sites were operated for 20 months in 2015-2017, with each site differing in terms of design, local meteorology, and fleet compositions. Measurement distance from the roadway and local meteorology were found to affect pollutant concentrations irrespective of background subtraction. However, using emission factors mostly accounted for the effects of dilution and dispersion, allowing intersite differences in emissions to be resolved. A multiple linear regression model that included predictor variables such as fraction of larger vehicles (>7.6 m in length; i.e., heavy-duty vehicles), vehicle speed, and ambient temperature accounted for intersite variability of the fleet average NO, NO x, and particle number EFs (R2:0.50-0.75), with lower model performance for CO and black carbon (BC) EFs (R2:0.28-0.46). NO x and BC EFs were affected more than CO and particle number EFs by the fraction of larger vehicles, which also resulted in measurable weekday/weekend differences. Pollutant EFs also varied with ambient temperature and because there were little seasonal changes in fleet composition, this was attributed to changes in fuel composition and/or post-tailpipe transformation of pollutants.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Monitoramento Ambiental , Fuligem , Emissões de Veículos
10.
Ann Allergy Asthma Immunol ; 118(4): 465-473, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28284980

RESUMO

BACKGROUND: The Kingston Allergy Birth Cohort (KABC) is a prenatally recruited cohort initiated to study the developmental origins of allergic disease. Kingston General Hospital was chosen for recruitment because it serves a population with notable diversity in environmental exposures relevant to the emerging concept of the exposome. OBJECTIVE: To establish a profile of the KABC using the exposome framework and examine parentally reported respiratory symptoms to 2 years of age. METHODS: Data on phase 1 of the cohort (n = 560 deliveries) were compiled, and multivariate Cox proportional hazards regression models were used to determine associations with respiratory symptoms. RESULTS: The KABC exhibits diversity within the 3 exposome domains of general external (socioeconomic status, rural or urban residence), specific external (cigarette smoke, breastfeeding, mold or dampness), and internal (respiratory health, gestational age), as well as significant associations between exposures from different domains. Significant associations emerged between parental reports of wheeze or cough without a cold and prenatal cigarette smoke exposure, mold or dampness in the home, and the use of air fresheners in the early-life home environment. Breastfeeding, older siblings, and increased gestational age were associated with decreased respiratory symptoms. CONCLUSION: The KABC is a unique cohort with diversity that can be leveraged for exposomics-based studies. This study found that all 3 domains of the exposome had effects on the respiratory health of KABC children. Ongoing studies using phase 1 of the KABC continue to explore the internal exposome through allergy skin testing and epigenetic analyses and the specific external domain through in-home environmental analyses, air pollution modeling, and ultimately potential convergences within and among domains.


Assuntos
Exposição Ambiental/efeitos adversos , Hipersensibilidade/epidemiologia , Hipersensibilidade/etiologia , Pais , Autorrelato , Canadá/epidemiologia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Hipersensibilidade/diagnóstico , Masculino , Modelos Estatísticos , Fenótipo , Gravidez , Fatores de Risco , Inquéritos e Questionários
11.
Environ Sci Technol ; 51(7): 4081-4090, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28234490

RESUMO

A majority of the ultrafine particles observed in real-world conditions are systematically excluded from many measurements that help to guide regulation of vehicle emissions. To investigate the impact of this exclusion, coincident near-road particle number (PN) emission factors were quantified up- and downstream of a thermodenuder during two seasonal month-long campaigns with wide-ranging ambient temperatures (-19 to +30 °C) to determine the volatile fraction of particles. During colder temperatures (<0 °C), the volatile fraction of particles was 94%, but decreased to 85% during warmer periods (>20 °C). Additionally, mean PN emission factors were a factor of 3.8 higher during cold compared to warm periods. On the basis of 130 000 vehicle plumes including three additional campaigns, fleet mean emission factors were calculated for PN (8.5 × 1014 kg-fuel-1), black carbon (37 mg kg-fuel-1), organic aerosol (51 mg kg-fuel-1), and particle-bound polycyclic aromatic hydrocarbons (0.7 mg kg-fuel-1). These findings demonstrate that significant differences exist between particles in thermally treated vehicle exhaust as compared to in real-world vehicle plumes to which populations in near-road environments are actually exposed. Furthermore, the magnitude of these differences are dependent upon season and may be more extreme in colder climates.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Aerossóis , Monitoramento Ambiental , Tamanho da Partícula , Temperatura , Volatilização
12.
Am J Respir Crit Care Med ; 194(5): 577-86, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-26963193

RESUMO

RATIONALE: Fine particulate air pollution (PM2.5; particulate matter 2.5 µm or less in diameter) is thought to contribute to acute respiratory morbidity in part through oxidative stress. OBJECTIVES: To examine the association between PM2.5 oxidative burden and emergency room visits for respiratory illnesses. METHODS: We conducted a case-crossover study in Ontario, Canada between 2004 and 2011, including 127,836 cases of asthma, 298,751 cases of chronic obstructive pulmonary disease, and more than 1.1 million cases of all respiratory illnesses. Daily air pollution data were collected from ground monitors, and city-level PM2.5 oxidative potential was measured on the basis of a synthetic respiratory tract lining fluid containing the antioxidants glutathione and ascorbate. Conditional logistic regression was used to estimate associations between air pollution concentrations and emergency room visits, adjusting for time-varying covariates. MEASUREMENTS AND MAIN RESULTS: Three-day mean PM2.5 concentrations were consistently associated with emergency room visits for all respiratory illnesses. Among children (<9 yr), each interquartile change (5.92 µg/m(3)) in 3-day mean PM2.5 was associated with a 7.2% (95% confidence interval, 4.2-10) increased risk of emergency room visits for asthma. Glutathione-related oxidative potential modified the impact of PM2.5 on emergency room visits for respiratory illnesses (P = 0.001) but only at low concentrations (≤10 µg/m(3)). Between-city differences in ascorbate-related oxidative potential did not modify the impact of PM2.5 on respiratory outcomes. CONCLUSIONS: Between-city differences in glutathione-related oxidative potential may modify the impact of PM2.5 on acute respiratory illnesses at low PM2.5 concentrations. This may explain in part how small changes in ambient PM2.5 mass concentrations can contribute to acute respiratory morbidity in low-pollution environments.


Assuntos
Poluição do Ar/efeitos adversos , Asma/complicações , Serviço Hospitalar de Emergência/estatística & dados numéricos , Glutationa/fisiologia , Estresse Oxidativo/fisiologia , Material Particulado/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/complicações , Adulto , Asma/epidemiologia , Estudos Cross-Over , Progressão da Doença , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Feminino , Humanos , Masculino , Ontário/epidemiologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doenças Respiratórias/complicações , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/etiologia
13.
Environ Sci Technol ; 50(15): 8385-92, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27406325

RESUMO

Compared to port fuel injection (PFI) engine exhaust, gasoline direct injection (GDI) engine exhaust has higher emissions of black carbon (BC), a climate-warming pollutant. However, the relative increase in BC emissions and climate trade-offs of replacing PFI vehicles with more fuel efficient GDI vehicles remain uncertain. In this study, BC emissions from GDI and PFI vehicles were compiled and BC emissions scenarios were developed to evaluate the climate impact of GDI vehicles using global warming potential (GWP) and global temperature potential (GTP) metrics. From a 20 year time horizon GWP analysis, average fuel economy improvements ranging from 0.14 to 14% with GDI vehicles are required to offset BC-induced warming. For all but the lowest BC scenario, installing a gasoline particulate filter with an 80% BC removal efficiency and <1% fuel penalty is climate beneficial. From the GTP-based analysis, it was also determined that GDI vehicles are climate beneficial within <1-20 years; longer time horizons were associated with higher BC scenarios. The GDI BC emissions spanned 2 orders of magnitude and varied by ambient temperature, engine operation, and fuel composition. More work is needed to understand BC formation mechanisms in GDI engines to ensure that the climate impacts of this engine technology are minimal.


Assuntos
Gasolina , Emissões de Veículos , Clima , Veículos Automotores , Material Particulado , Fuligem , Temperatura
14.
Environ Sci Technol ; 50(4): 2035-43, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26794244

RESUMO

Four field campaigns were conducted between February 2014 and January 2015 to measure emissions from light-duty gasoline direct injection (GDI) vehicles (2013 Ford Focus) in an urban near-road environment in Toronto, Canada. Measurements of CO2, CO, NOx, black carbon (BC), benzene, toluene, ethylbenzene-xylenes (BTEX), and size-resolved particle number (PN) were recorded 15 m from the roadway and converted to fuel-based emission factors (EFs). Other than for NOx and CO, the GDI engine had elevated emissions compared to the Toronto fleet, with BC EFs in the 73rd percentile, BTEX EFs in the 80-90th percentile, and PN EFs in the 75th percentile during wintertime measurements. Additionally, for three campaigns, a second platform for measuring PN and CO2 was placed 1.5-3 m from the roadway to quantify changes in PN with distance from point of emission. GDI vehicle PN EFs were found to increase by up to 240% with increasing distance from the roadway, predominantly due to an increasing fraction of sub-40 nm particles. PN and BC EFs from the same engine technology were also measured in the laboratory. BC EFs agreed within 20% between the laboratory and real-world measurements; however, laboratory PN EFs were an order of magnitude lower due to exhaust conditioning.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Veículos Automotores , Emissões de Veículos/análise , Canadá , Dióxido de Carbono/análise , Gasolina , Óxidos de Nitrogênio/análise , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Fuligem/análise , Análise Espaço-Temporal
16.
Anal Bioanal Chem ; 407(20): 5899-909, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25146355

RESUMO

Alkylamines are associated with both natural and anthropogenic sources and have been detected in ambient aerosol in a variety of environments. However, little is known about the ubiquity or relative abundance of these species in Europe. In this work, ambient single-particle mass spectra collected at five sampling sites across Europe have been analysed for their alkylamine content. The aerosol time-of-flight mass spectrometer (ATOFMS) data used were collected in Ireland (Cork), France (Paris, Dunkirk and Corsica) and Switzerland (Zurich) between 2008 and 2013. Each dataset was queried for mass spectral marker ions associated with the following ambient alkylamines: dimethylamine (DMA), trimethylamine (TMA), diethylamine (DEA), triethylamine (TEA), dipropylamine (DPA) and tripropylamine (TPA). The fraction of ambient particles that contained detectable alkylamines ranged from 1 to 17 % depending on location, with the highest fractions observed in Paris and Zurich in the winter months. The lowest fractions were observed at coastal sites, where the influence of animal husbandry-related alkylamine emissions is also expected to be lowest. TMA was the most ubiquitous particle phase alkylamine detected and was observed at all locations. Alkylamines were found to be internally mixed with both sulphate and nitrate for each dataset, suggesting that aminium salt formation may be important at all sites investigated. Interestingly, in Corsica, all alkylamine particles detected were also found to be internally mixed with methanesulphonic acid (MSA), indicating that aminium methanesulphonate salts may represent a component of marine ambient aerosol in the summer months. Internal mixing of alkylamines with sea salt was not observed, however. Alkylamine-containing particle composition was found to be reasonably homogeneous at each location, with the exception of the Corsica and Dunkirk sites, where two and four distinct mixing states were observed, respectively.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Dietilaminas/análise , Dimetilaminas/análise , Etilaminas/análise , Metilaminas/análise , Propilaminas/análise , Cidades , Monitoramento Ambiental/métodos , Europa (Continente) , Espectrometria de Massas/métodos , Tamanho da Partícula , Estações do Ano , Sulfatos/análise
17.
J Environ Sci (China) ; 30: 90-101, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25872713

RESUMO

The oxidation of SO2 is commonly regarded as a major driver for new particle formation (NPF) in the atmosphere. In this study, we explored the connection between measured mixing ratio of SO2 and observed long-term (duration>3 hr) and short-term (duration<1.5 hr) NPF events at a semi-urban site in Toronto. Apparent NPF rates (J30) showed a moderate correlation with the concentration of sulfuric acid ([H2SO4]) calculated from the measured mixing ratio of SO2 in long-term NPF events and some short-term NPF events (Category I) (R2=0.66). The exponent in the fitting line of J30~[H2SO4]n in these events was 1.6. It was also found that SO2 mixing ratios varied a lot during long-term NPF events, leading to a significant variation of new particle counts. In the SO2-unexplained short-term NPF events (Category II), analysis showed that new particles were formed aloft and then mixed down to the ground level. Further calculation results showed that sulfuric acid oxidized from SO2 probably made a negligible contribution to the growth of >10 nm new particles.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Dióxido de Enxofre/química , Movimentos do Ar , Cidades , Monitoramento Ambiental , Ontário , Oxirredução , Tamanho da Partícula , Fatores de Tempo
18.
Inhal Toxicol ; 24(3): 161-71, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22356274

RESUMO

CONTEXT: Strong epidemiological evidence exists linking particulate matter (PM) exposures with hospital admissions of individuals for cardiopulmonary symptoms. The PM size is important in influencing the extent of infiltration into the respiratory tract and systemic circulation and directs the differential physiological impacts. OBJECTIVE: To investigate the differential effects of the quasi-ultrafine (PM(0.2)), fine (PM(0.15-2.5)), and coarse PM (PM(2.5-10)) size fractions on pulmonary and cardiac function. METHODS: Female BALB/c mice were exposed to HEPA-filtered laboratory air or concentrated coarse, fine, or quasi-ultrafine PM using Harvard Ambient Particle Concentrators in conjunction with our nose-only exposure system. These exposures were conducted as part of the "Health Effects of Aerosols in Toronto (HEAT)" campaign. Following a 4 h exposure, mice underwent assessment of respiratory function and recording of electrocardiograms using the flexiVent® system. RESULTS: Exposure to coarse and fine PM resulted in a significant reduction in quasistatic compliance of the lung. Baseline total respiratory resistance and maximum responsiveness to methacholine were augmented after coarse PM exposures but were not affected by quasi-ultrafine PM exposures. In contrast, quasi-ultrafine PM alone had a significant effect on heart rate and in reducing heart rate variability. CONCLUSION: These findings indicate that coarse and fine PM influence lung function and airways responsiveness, while ultrafine PM can perturb cardiac function. This study supports the hypothesis that coarse and fine PM exerts its predominant physiologic effects at the site of deposition in the airways, whereas ultrafine PM likely crosses the alveolar epithelial barrier into the systemic circulation to affect cardiovascular function.


Assuntos
Resistência das Vias Respiratórias/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Material Particulado/toxicidade , Respiração/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar/citologia , Eletrocardiografia/efeitos dos fármacos , Feminino , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C
19.
Environ Pollut ; 292(Pt B): 118417, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743966

RESUMO

The lockdown measures caused by the COVID-19 pandemic substantially affected air quality in many cities through reduced emissions from a variety of sources, including traffic. The change in PM2.5 and its chemical composition in downtown Toronto, Canada, including organic/inorganic composition and trace metals, were examined by comparing with a pre-lockdown period and respective periods in the three previous years. During the COVID-19 lockdown, the average traffic volume reduced by 58%, whereas PM2.5 only decreased by 4% relative to the baselines. Major chemical components of PM2.5, such as organic aerosol and ammonium nitrate, showed significant seasonal changes between pre- and lockdown periods. The changes in local and regional PM2.5 sources were assessed using hourly chemical composition measurements of PM2.5. Major regional and secondary PM2.5 sources exhibited no clear reductions during the lockdown period compared to pre-lockdown and the previous years. However, cooking emissions substantially dropped by approximately 61% due to the restrictions imposed on local businesses (i.e., restaurants) during the lockdown, and then gradually increased throughout the recovery periods. The reduction in non-tailpipe emissions, characterized by road dust and brake/tire dust, ranged from 37% to 61%, consistent with the changes in traffic volume and meteorology across seasons in 2020. Tailpipe emissions dropped by approximately 54% and exhibited even larger reductions during morning rush hours. The reduction of tailpipe emissions was statistically associated with the reduced number of trucks, highlighting that a small fraction of trucks contributes disproportionally to tailpipe emissions. This study provides insight into the potential for local benefits to arise from traffic intervention in traffic-dominated urban areas and supports the development of targeted strategies and regulations to effectively reduce local air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , Material Particulado/análise , SARS-CoV-2
20.
Ann Work Expo Health ; 66(3): 379-391, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34595509

RESUMO

Oxidative potential (OP) is a toxicologically relevant metric that integrates features like mass concentration and chemical composition of particulate matter (PM). Although it has been extensively explored as a metric for the characterization of environmental particles, this is still an underexplored application in the occupational field. This study aimed to estimate the OP of particles in two occupational settings from a construction trades school. This characterization also includes the comparison between activities, sampling strategies, and size fractions. Particulate mass concentrations (PM4-Personal, PM4-Area, and PM2.5-Area) and number concentrations were measured during three weeks of welding and construction/bricklaying activities. The OP was assessed by the ascorbate assay (OPAA) using a synthetic respiratory tract lining fluid (RTLF), while the oxidative burden (OBAA) was determined by multiplying the OPAA values with PM concentrations. Median (25th-75th percentiles) of PM mass and number concentrations were 900 (672-1730) µg m-3 and 128 000 (78 000-169 000) particles cm-3 for welding, and 432 (345-530) µg m-3 and 2800 (1700-4400) particles cm-3 for construction. Welding particles, especially from the first week of activities, were also associated with higher redox activity (OPAA: 3.3 (2.3-4.6) ρmol min-1 µg-1; OBAA: 1750 (893-4560) ρmol min-1 m-3) compared to the construction site (OPAA: 1.4 (1.0-1.8) ρmol min-1 µg-1; OBAA: 486 (341-695) ρmol min-1 m-3). The OPAA was independent of the sampling strategy or size fraction. However, driven by the higher PM concentrations, the OBAA from personal samples was higher compared to area samples in the welding shop, suggesting an influence of the sampling strategy on PM concentrations and OBAA. These results demonstrate that important levels of OPAA can be found in occupational settings, especially during welding activities. Furthermore, the OBAA found in both workplaces largely exceeded the levels found in environmental studies. Therefore, measures of OP and OB could be further explored as metrics for exposure assessment to occupational PM, as well as for associations with cardiorespiratory outcomes in future occupational epidemiological studies.


Assuntos
Poluentes Atmosféricos , Exposição Ocupacional , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Humanos , Oxirredução , Estresse Oxidativo , Tamanho da Partícula , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA