Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(22): e2211947120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216538

RESUMO

Cells integrate mechanical cues to direct fate specification to maintain tissue function and homeostasis. While disruption of these cues is known to lead to aberrant cell behavior and chronic diseases, such as tendinopathies, the underlying mechanisms by which mechanical signals maintain cell function are not well understood. Here, we show using a model of tendon de-tensioning that loss of tensile cues in vivo acutely changes nuclear morphology, positioning, and expression of catabolic gene programs, resulting in subsequent weakening of the tendon. In vitro studies using paired ATAC/RNAseq demonstrate that the loss of cellular tension rapidly reduces chromatin accessibility in the vicinity of Yap/Taz genomic targets while also increasing expression of genes involved in matrix catabolism. Concordantly, the depletion of Yap/Taz elevates matrix catabolic expression. Conversely, overexpression of Yap results in a reduction of chromatin accessibility at matrix catabolic gene loci, while also reducing transcriptional levels. The overexpression of Yap not only prevents the induction of this broad catabolic program following a loss of cellular tension, but also preserves the underlying chromatin state from force-induced alterations. Taken together, these results provide novel mechanistic details by which mechanoepigenetic signals regulate tendon cell function through a Yap/Taz axis.


Assuntos
Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Cromatina/genética , Cromatina/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Homeostase , Transdução de Sinais/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
2.
Osteoarthritis Cartilage ; 31(9): 1202-1213, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37146960

RESUMO

OBJECTIVE: While the role of hedgehog (Hh) signaling in promoting zonal fibrocartilage production during development is well-established, whether this pathway can be leveraged to improve tendon-to-bone repair in adults is unknown. Our objective was to genetically and pharmacologically stimulate the Hh pathway in cells that give rise to zonal fibrocartilaginous attachments to promote tendon-to-bone integration. DESIGN: Hh signaling was stimulated genetically via constitutive Smo (SmoM2 construct) activation of bone marrow stromal cells or pharmacologically via systemic agonist delivery to mice following anterior cruciate ligament reconstruction (ACLR). To assess tunnel integration, we measured mineralized fibrocartilage (MFC) formation in these mice 28 days post-surgery and performed tunnel pullout testing. RESULTS: Hh pathway-related genes increased in cells forming the zonal attachments in wild-type mice. Both genetic and pharmacologic stimulation of the Hh pathway increased MFC formation and integration strength 28 days post-surgery. We next conducted studies to define the role of Hh in specific stages of the tunnel integration process. We found Hh agonist treatment increased the proliferation of the progenitor pool in the first week post-surgery. Additionally, genetic stimulation led to continued MFC production in the later stages of the integration process. These results indicate that Hh signaling plays an important biphasic role in cell proliferation and differentiation towards fibrochondrocytes following ACLR. CONCLUSION: This study reveals a biphasic role for Hh signaling during the tendon-to-bone integration process after ACLR. In addition, the Hh pathway is a promising therapeutic target to improve tendon-to-bone repair outcomes.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Proteínas Hedgehog , Animais , Camundongos , Proteínas Hedgehog/genética , Osso e Ossos/metabolismo , Tendões , Diferenciação Celular , Reconstrução do Ligamento Cruzado Anterior/métodos
3.
Am J Sports Med ; 50(1): 170-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851182

RESUMO

BACKGROUND: Achilles tendon ruptures are painful and debilitating injuries and are most common in middle-aged patients. There is a lack of understanding of the underlying causes for increased rupture rates in middle-aged patients and how healing outcomes after a rupture might be affected by patient age. Therefore, the objective of this study was to define age-specific Achilles tendon healing by assessing ankle functional outcomes and Achilles tendon mechanical and histological properties after a rupture using a rat model. HYPOTHESIS: Rats representing the middle-aged patient population would demonstrate reduced healing capability after an Achilles tendon rupture, as demonstrated by a slower return to baseline ankle functional properties and inferior biomechanical and histological tendon properties. STUDY DESIGN: Controlled laboratory study. METHODS: Fischer 344 rats were categorized by age to represent young, middle-aged, and old patients, and Achilles tendon ruptures were induced in the right hindlimb. Animals were allowed to heal and were euthanized at 3 or 6 weeks after the injury. In vivo functional assays and ultrasound imaging were performed throughout the healing period, and ex vivo tendon mechanical and histological properties were assessed after euthanasia. RESULTS: Rats representing middle-aged patients displayed reduced healing potential compared with the other age groups, as they demonstrated decreased recovery of in vivo functional and ultrasound assessment parameters and inferior mechanical and histological properties after an Achilles tendon rupture. CONCLUSION: These findings may help explain the increased rupture rate observed clinically in middle-aged patients by suggesting that there may be altered tendon responses to daily trauma. CLINICAL RELEVANCE: The results provide novel data on age-specific healing outcomes after an Achilles tendon rupture, which underscores the importance of considering a patient's age during treatment and expectations for outcomes.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Tendão do Calcâneo/diagnóstico por imagem , Animais , Humanos , Ratos , Ratos Endogâmicos F344 , Ruptura , Resultado do Tratamento , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA