Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Physiol Rev ; 103(1): 649-716, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049115

RESUMO

Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.


Assuntos
Doenças Cardiovasculares , Hematopoese , Humanos , Camundongos , Animais , Idoso , Hematopoese/genética , Hematopoiese Clonal/genética , Células-Tronco Hematopoéticas , Mosaicismo , Doenças Cardiovasculares/genética , Mutação
2.
Circulation ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881440

RESUMO

BACKGROUND: Thromboembolic events, including myocardial infarction (MI) or stroke, caused by the rupture or erosion of unstable atherosclerotic plaques are the leading cause of death worldwide. Although most mouse models of atherosclerosis develop lesions in the aorta and carotid arteries, they do not develop advanced coronary artery lesions. Moreover, they do not undergo spontaneous plaque rupture with MI and stroke or do so at such a low frequency that they are not viable experimental models to study late-stage thrombotic events or to identify novel therapeutic approaches for treating atherosclerotic disease. This has stymied the development of more effective therapeutic approaches for reducing these events beyond what has been achieved with aggressive lipid lowering. Here, we describe a diet-inducible mouse model that develops widespread advanced atherosclerosis in coronary, brachiocephalic, and carotid arteries with plaque rupture, MI, and stroke. METHODS: We characterized a novel mouse model with a C-terminal mutation in the scavenger receptor class B, type 1 (SR-BI), combined with Ldlr knockout (designated SR-BI∆CT/∆CT/Ldlr-/-). Mice were fed Western diet (WD) for 26 weeks and analyzed for MI and stroke. Coronary, brachiocephalic, and carotid arteries were analyzed for atherosclerotic lesions and indices of plaque stability. To validate the utility of this model, SR-BI∆CT/∆CT/Ldlr-/- mice were treated with the drug candidate AZM198, which inhibits myeloperoxidase, an enzyme produced by activated neutrophils that predicts rupture of human atherosclerotic lesions. RESULTS: SR-BI∆CT/∆CT/Ldlr-/- mice show high (>80%) mortality rates after 26 weeks of WD feeding because of major adverse cardiovascular events, including spontaneous plaque rupture with MI and stroke. Moreover, WD-fed SR-BI∆CT/∆CT/Ldlr-/- mice displayed elevated circulating high-sensitivity cardiac troponin I and increased neutrophil extracellular trap formation within lesions compared with control mice. Treatment of WD-fed SR-BI∆CT/∆CT/Ldlr-/- mice with AZM198 showed remarkable benefits, including >90% improvement in survival and >60% decrease in the incidence of plaque rupture, MI, and stroke, in conjunction with decreased circulating high-sensitivity cardiac troponin I and reduced neutrophil extracellular trap formation within lesions. CONCLUSIONS: WD-fed SR-BI∆CT/∆CT/Ldlr-/- mice more closely replicate late-stage clinical events of advanced human atherosclerotic disease than previous models and can be used to identify and test potential new therapeutic agents to prevent major adverse cardiac events.

4.
Stroke ; 52(11): 3661-3669, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619986

RESUMO

Background and Purpose: Preclinical stroke studies endeavor to model the pathophysiology of clinical stroke, assessing a range of parameters of injury and impairment. However, poststroke pathology is complex and variable, and associations between diverse parameters may be difficult to identify within the usual small study designs that focus on infarct size. Methods: We have performed a retrospective large-scale big data analysis of records from 631 C57BL/6 mice of either sex in which the middle cerebral artery was occluded by 1 of 5 surgeons either transiently for 1 hour followed by 23-hour reperfusion (transient middle cerebral artery occlusion [MCAO]; n=435) or permanently for 24 hours without reperfusion (permanent MCAO; n=196). Analyses included a multivariate linear mixed model with random intercept for different surgeons as a random effect to reduce type I and type II errors and a generalized ordinal regression model for ordinal data when random effects are low. Results: Analyses indicated that brain edema volume was associated with infarct volume at 24 hours (ß, 0.52 [95% CI, 0.45­0.59]) and was higher after permanent MCAO than after transient MCAO (P<0.05). A more severe clinical score was associated with a greater infarct volume but not with the animal's age or edema volume. Further, a more severe clinical score was observed for a given brain infarct volume after transient MCAO versus permanent MCAO. Remarkably the animal's age, which corresponded with the period of young adulthood (6­40 weeks; equivalent to ≈18­35 years in humans), was positively associated with severity of lung infection (ß, 0.65 [95% CI, 0.42­0.88]) and negatively with spleen weight (ß, −0.36 [95% CI, −0.63 to −0.09]). Conclusions: Large-scale analysis of preclinical stroke data can provide researchers in our field with insight into relationships between variables not possible if individual studies are analyzed in isolation and has identified hypotheses for future study.


Assuntos
Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos Retrospectivos
5.
Curr Opin Cardiol ; 35(3): 219-225, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32073406

RESUMO

PURPOSE OF REVIEW: While advanced age is the major risk factor for the development of atherosclerotic cardiovascular disease (ASCVD), we have a poor understanding of how aging promotes the progression of this disease. Recent evidence suggests that the age-dependent accumulation of somatic mutations in hematopoietic cells may represent a new causal risk factor for ASCVD. RECENT FINDINGS: A hallmark of aging is the accumulation of somatic DNA mutations in all tissues of the body. Accordingly, evidence shows that hematopoietic stem/progenitor cells accumulate somatic mutations as a function of age in nonsymptomatic individuals. When these mutations occur in driver genes that provide a selective advantage to the hematopoietic stem/progenitor cells, they undergo a clonal expansion and progressively give rise to blood leukocytes that harbor these mutations. This phenomenon, referred to as clonal hematopoiesis, has been associated with the increased risk of mortality, hematologic malignancy, ASCVD, and related diseases. Notably, many individuals exhibiting clonal hematopoiesis carry single 'driver' mutations in preleukemic genes including DNA methyltransferase 3a, ten-eleven translocation 2, additional sex combs like 1, and Janus kinase 2. Experimental studies show that these mutations in some of these genes can alter the inflammatory properties of the leukocyte and contribute to the pathogenesis of ASCVD. SUMMARY: We review recent epidemiological and experimental findings on the association between age-related clonal hematopoiesis and ASCVD by focusing on prevalent driver gene mutations.


Assuntos
Aterosclerose , Doenças Cardiovasculares/genética , DNA Metiltransferase 3A , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , Mutação , Fatores de Risco
6.
Stroke ; 49(3): 700-709, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29382802

RESUMO

BACKGROUND AND PURPOSE: Human amnion epithelial cells (hAECs) are nonimmunogenic, nontumorigenic, anti-inflammatory cells normally discarded with placental tissue. We reasoned that their profile of biological features, wide availability, and the lack of ethical barriers to their use could make these cells useful as a therapy in ischemic stroke. METHODS: We tested the efficacy of acute (1.5 hours) or delayed (1-3 days) poststroke intravenous injection of hAECs in 4 established animal models of cerebral ischemia. Animals included young (7-14 weeks) and aged mice (20-22 months) of both sexes, as well as adult marmosets of either sex. RESULTS: We found that hAECs administered 1.5 hours after stroke in mice migrated to the ischemic brain via a CXC chemokine receptor type 4-dependent mechanism and reduced brain inflammation, infarct development, and functional deficits. Furthermore, if hAECs administration was delayed until 1 or 3 days poststroke, long-term functional recovery was still augmented in young and aged mice of both sexes. We also showed proof-of-principle evidence in marmosets that acute intravenous injection of hAECs prevented infarct development from day 1 to day 10 after stroke. CONCLUSIONS: Systemic poststroke administration of hAECs elicits marked neuroprotection and facilitates mechanisms of repair and recovery.


Assuntos
Âmnio/transplante , Células Epiteliais/transplante , Neuroproteção , Acidente Vascular Cerebral/terapia , Animais , Callithrix , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
9.
Stroke ; 45(3): 835-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24457292

RESUMO

BACKGROUND AND PURPOSE: Experimental studies indicate that estrogen typically, but not universally, has a neuroprotective effect in stroke. Ischemic stroke increases membrane-bound G protein-coupled estrogen receptor (GPER) distribution and expression in the brain of male but not female mice. We hypothesized that GPER activation may have a greater neuroprotective effect in males than in females after stroke. METHODS: Vehicle (dimethyl sulfoxide), a GPER agonist (G-1, 30 µg/kg), or a GPER antagonist (G-15, 300 µg/kg) were administered alone or in combination to young or aged male mice, or young intact or ovariectomized female mice, 1 hour before or 3 hours after cerebral ischemia-reperfusion. Some mice were treated with a combination of G-1 and the pan-caspase inhibitor, quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-VD-OPh), 1 hour before stroke. We evaluated functional and histological end points of stroke outcome up to 72 hours after ischemia-reperfusion. In addition, apoptosis was examined using cleaved caspase-3 immunohistochemistry. RESULTS: Surprisingly, G-1 worsened functional outcomes and increased infarct volume in males poststroke, in association with an increased expression of cleaved caspase-3 in peri-infarct neurons. These effects were blocked by G-15 or Q-VD-OPh. Conversely, G-15 improved functional outcomes and reduced infarct volume after stroke in males, whether given before or after stroke. In contrast to findings in males, G-1 reduced neurological deficit, apoptosis, and infarct volume in ovariectomized females, but had no significant effect in intact females. CONCLUSIONS: Future therapies for acute stroke could exploit the modulation of GPER activity in a sex-specific manner.


Assuntos
Isquemia Encefálica/patologia , Receptores de Estrogênio/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Acidente Vascular Cerebral/patologia , Envelhecimento/fisiologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Encéfalo/patologia , Isquemia Encefálica/tratamento farmacológico , Inibidores de Caspase/farmacologia , Infarto Cerebral/patologia , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/fisiopatologia , Ovariectomia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Traumatismo por Reperfusão/patologia , Caracteres Sexuais , Acidente Vascular Cerebral/tratamento farmacológico , Resultado do Tratamento
10.
J Surg Educ ; 80(7): 965-970, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37198079

RESUMO

BACKGROUND: Nontechnical skills are critical in cardiac surgery but currently there is no formal paradigm to teach these in residency training. We investigated the use of the Nontechnical skills for surgeons (NOTSS) system as a framework to assess and teach nontechnical skills related to cardiopulmonary bypass (CPB) management. METHODS: Single-center retrospective analysis of Integrated and Independent pathway thoracic surgery residents who participated in dedicated nontechnical skills evaluation and training. Two CPB management simulation scenarios were utilized. All residents received a lecture on CPB fundamentals and then individually participated in the first simulation ("Pre-NOTSS"). Immediately following this, nontechnical skills were rated by self-assessment and by a NOTSS trainer. All residents then underwent group NOTSS training followed by the second individual simulation ("Post-NOTSS"). Nontechnical skills were rated as before. NOTSS categories assessed included Situation Awareness, Decision Making, Communication and Teamwork, and Leadership. RESULTS: Nine residents were divided into 2 groups: Junior (n = 4, PGY1-4) and Senior (n = 5, PGY5-8). Pre-NOTSS resident self-ratings were higher for Senior than Junior in the categories of Decision Making, Communication and Teamwork, and Leadership while trainer ratings were similar between the groups. Post-NOTSS, resident self-ratings were higher for Senior than Junior in Situation Awareness and Decision Making while trainer scores were higher for both groups in Communication and Teamwork and Leadership. CONCLUSIONS: The NOTSS framework in conjunction with simulation scenarios provides a practical framework to evaluate and teach nontechnical skills related to CPB management. NOTSS training can lead to improvements in both subjective and objective ratings of nontechnical skills for all PGY levels.


Assuntos
Internato e Residência , Cirurgiões , Humanos , Competência Clínica , Avaliação Educacional , Ponte Cardiopulmonar , Estudos Retrospectivos
11.
Cardiovasc Res ; 118(6): 1413-1432, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34164655

RESUMO

Clonal haematopoiesis (CH) is a phenomenon whereby somatic mutations confer a fitness advantage to haematopoietic stem and progenitor cells (HSPCs) and thus facilitate their aberrant clonal expansion. These mutations are carried into progeny leucocytes leading to a situation whereby a substantial fraction of an individual's blood cells originate from the HSPC mutant clone. Although this condition rarely progresses to a haematological malignancy, circulating blood cells bearing the mutation have the potential to affect other organ systems as they infiltrate into tissues under both homeostatic and disease conditions. Epidemiological and clinical studies have revealed that CH is highly prevalent in the elderly and is associated with an increased risk of cardiovascular disease and mortality. Recent experimental studies in murine models have assessed the most commonly mutated 'driver' genes associated with CH, and have provided evidence for mechanistic connections between CH and cardiovascular disease. A deeper understanding of the mechanisms by which specific CH mutations promote disease pathogenesis is of importance, as it could pave the way for individualized therapeutic strategies targeting the pathogenic CH gene mutations in the future. Here, we review the epidemiology of CH and the mechanistic work from studies using murine disease models, with a particular focus on the strengths and limitations of these experimental systems. We intend for this review to help investigators select the most appropriate models to study CH in the setting of cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Hematopoiese Clonal , Idoso , Animais , Doenças Cardiovasculares/epidemiologia , Hematopoiese Clonal/genética , Modelos Animais de Doenças , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , Camundongos , Mutação
12.
Science ; 377(6603): 292-297, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857592

RESUMO

Hematopoietic mosaic loss of Y chromosome (mLOY) is associated with increased risk of mortality and age-related diseases in men, but the causal and mechanistic relationships have yet to be established. Here, we show that male mice reconstituted with bone marrow cells lacking the Y chromosome display increased mortality and age-related profibrotic pathologies including reduced cardiac function. Cardiac macrophages lacking the Y chromosome exhibited polarization toward a more fibrotic phenotype, and treatment with a transforming growth factor ß1-neutralizing antibody ameliorated cardiac dysfunction in mLOY mice. A prospective study revealed that mLOY in blood is associated with an increased risk for cardiovascular disease and heart failure-associated mortality. Together, these results indicate that hematopoietic mLOY causally contributes to fibrosis, cardiac dysfunction, and mortality in men.


Assuntos
Envelhecimento , Deleção Cromossômica , Insuficiência Cardíaca , Células-Tronco Hematopoéticas , Miocárdio , Cromossomo Y , Envelhecimento/genética , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Macrófagos , Masculino , Camundongos , Mosaicismo , Miocárdio/patologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Cromossomo Y/genética
13.
J Vis Exp ; (171)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34125083

RESUMO

Clonal hematopoiesis is a prevalent age-associated condition that results from the accumulation of somatic mutations in hematopoietic stem and progenitor cells (HSPCs). Mutations in driver genes, that confer cellular fitness, can lead to the development of expanding HSPC clones that increasingly give rise to progeny leukocytes harboring the somatic mutation. Because clonal hematopoiesis has been associated with heart disease, stroke, and mortality, the development of experimental systems that model these processes is key to understanding the mechanisms that underly this new risk factor. Bone marrow transplantation procedures involving myeloablative conditioning in mice, such as total-body irradiation (TBI), are commonly employed to study the role of immune cells in cardiovascular diseases. However, simultaneous damage to the bone marrow niche and other sites of interest, such as the heart and brain, is unavoidable with these procedures. Thus, our lab has developed two alternative methods to minimize or avoid possible side effects caused by TBI: 1) bone marrow transplantation with irradiation shielding and 2) adoptive BMT to non-conditioned mice. In shielded organs, the local environment is preserved allowing for the analysis of clonal hematopoiesis while the function of resident immune cells is unperturbed. In contrast, the adoptive BMT to non-conditioned mice has the additional advantage that both the local environments of the organs and the hematopoietic niche are preserved. Here, we compare three different hematopoietic cell reconstitution approaches and discuss their strengths and limitations for studies of clonal hematopoiesis in cardiovascular disease.


Assuntos
Transplante de Medula Óssea , Hematopoiese Clonal , Animais , Medula Óssea , Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Condicionamento Pré-Transplante
14.
Innovations (Phila) ; 16(5): 480-484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34338072

RESUMO

OBJECTIVE: The benefits of minimally invasive adult cardiac surgery are well established. Nevertheless, minimally invasive congenital cardiac procedures, even for adult patients, are uncommon. In 2018, we started repairing anomalous aortic origin of a coronary artery (AAOCA) through a 5 cm anterior minithoracotomy when possible to improve cosmesis and avoid sternal precautions. We hypothesized this approach was safe and reliable. METHODS: A 5 cm incision was made in the right second intercostal space. The incision was carried down to the pericardium while preserving the internal mammary artery. With the pericardium in view, the second and third ribs were disarticulated. Central cardiopulmonary bypass was established, and the repair was carried out based on the patient's anatomy. The technique was modified to a left anterior minithoracotomy for 1 patient who required pulmonary artery translocation. At any point, if the dissection or repair was not progressing appropriately, the minimally invasive exposure was converted to a partial or traditional median sternotomy. RESULTS: Between June 2018 and June 2019, 11 patients underwent minimally invasive anomalous coronary repair. Four patients (3 with body mass index >30) were converted to traditional sternotomy due to poor visualization. Postoperatively, 1 patient required coronary artery bypass after 335 days, due to extensive collaterals and stable angina. Otherwise, at a median follow-up of 437 days (IQR 340 to 480), patients had resumed baseline activity without recurrent symptoms. CONCLUSIONS: Minimally invasive AAOCA repair may be appealing, although surgeons should be cautious given the high conversion rate.


Assuntos
Vasos Coronários , Artéria Torácica Interna , Adulto , Aorta , Ponte de Artéria Coronária , Vasos Coronários/cirurgia , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos , Toracotomia
15.
Annu Rev Pathol ; 15: 419-438, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31689371

RESUMO

Traditional risk factors are incompletely predictive of cardiovascular disease development, a leading cause of death in the elderly. Recent epidemiological studies have shown that human aging is associated with an increased frequency of somatic mutations in the hematopoietic system, which provide a competitive advantage to a mutant cell, thus allowing for its clonal expansion, a phenomenon known as clonal hematopoiesis. Unexpectedly, these mutations have been associated with a higher incidence of cardiovascular disease, suggesting a previously unrecognized connection between somatic mutations in hematopoietic cells and cardiovascular disease. Here, we provide an up-to-date review of clonal hematopoiesis and its association with aging and cardiovascular disease. We also give a detailed report of the experimental studies that have been instrumental in understanding the relationship between clonal hematopoiesis and cardiovascular disease and have shed light on the mechanisms by which hematopoietic somatic mutations contribute to disease pathology.


Assuntos
Envelhecimento/fisiologia , Doenças Cardiovasculares/etiologia , Evolução Clonal/fisiologia , Hematopoese/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Doenças Cardiovasculares/epidemiologia , Células Cultivadas , Hematopoese/genética , Humanos , Incidência , Mutação/fisiologia , Fatores de Risco
16.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32154790

RESUMO

Clonal hematopoiesis of indeterminate potential is prevalent in elderly individuals and associated with increased risks of all-cause mortality and cardiovascular disease. However, mouse models to study the dynamics of clonal hematopoiesis and its consequences on the cardiovascular system under homeostatic conditions are lacking. We developed a model of clonal hematopoiesis using adoptive transfer of unfractionated ten-eleven translocation 2-mutant (Tet2-mutant) bone marrow cells into nonirradiated mice. Consistent with age-related clonal hematopoiesis observed in humans, these mice displayed a progressive expansion of Tet2-deficient cells in multiple hematopoietic stem and progenitor cell fractions and blood cell lineages. The expansion of the Tet2-mutant fraction was also observed in bone marrow-derived CCR2+ myeloid cell populations within the heart, but there was a negligible impact on the yolk sac-derived CCR2- cardiac-resident macrophage population. Transcriptome profiling revealed an enhanced inflammatory signature in the donor-derived macrophages isolated from the heart. Mice receiving Tet2-deficient bone marrow cells spontaneously developed age-related cardiac dysfunction characterized by greater hypertrophy and fibrosis. Altogether, we show that Tet2-mediated hematopoiesis contributes to cardiac dysfunction in a nonconditioned setting that faithfully models human clonal hematopoiesis in unperturbed bone marrow. Our data support clinical findings that clonal hematopoiesis per se may contribute to diminished health span.


Assuntos
Hematopoiese Clonal/fisiologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Cardiopatias , Proteínas Proto-Oncogênicas/metabolismo , Transferência Adotiva , Envelhecimento/patologia , Animais , Dioxigenases , Células-Tronco Hematopoéticas , Macrófagos , Camundongos
17.
J Cereb Blood Flow Metab ; 40(6): 1300-1315, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31296130

RESUMO

Ischemic stroke is a major cause of mortality and long-term disability with limited treatment options, and a greater understanding of the gene regulatory mechanisms underlying ischemic stroke-associated neuroinflammation is required for new therapies. To study ischemic stroke in vivo, mice were subjected to sustained ischemia by intraluminal filament-induced middle cerebral artery occlusion (MCAo) for 24 h without reperfusion or transient ischemia for 30 min followed by 23.5 h reperfusion, and brain miRNA and mRNA expression changes were quantified by TaqMan OpenArrays and gene (mRNA) expression arrays, respectively. Sustained ischemia resulted in 18 significantly altered miRNAs and 392 altered mRNAs in mouse brains compared to Sham controls; however, the transient ischemic condition was found to impact only 6 miRNAs and 126 mRNAs. miR-367-3p was found to be significantly decreased in brain homogenates with sustained ischemia. G protein-coupled receptor, family C, group 5, member A (Gprc5a), a miR-367-3p target gene, was found to be significantly increased with sustained ischemia. In primary neurons, inhibition of endogenous miR-367-3p resulted in a significant increase in Gprc5a expression. Moreover, miR-367-3p was found to be co-expressed with GPRC5A in human neurons. Results suggest that loss of miR-367-3p suppression of GPRC5A may contribute to neuroinflammation associated with ischemic stroke.


Assuntos
Regulação da Expressão Gênica/fisiologia , AVC Isquêmico/metabolismo , MicroRNAs/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Animais , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
J Vis Exp ; (152)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31633690

RESUMO

Manipulating genes in hematopoietic stem cells using conventional transgenesis approaches can be time-consuming, expensive, and challenging. Benefiting from advances in genome editing technology and lentivirus-mediated transgene delivery systems, an efficient and economical method is described here that establishes mice in which genes are manipulated specifically in hematopoietic stem cells. Lentiviruses are used to transduce Cas9-expressing lineage-negative bone marrow cells with a guide RNA (gRNA) targeting specific genes and a red fluorescence reporter gene (RFP), then these cells are transplanted into lethally-irradiated C57BL/6 mice. Mice transplanted with lentivirus expressing non-targeting gRNA are used as controls. Engraftment of transduced hematopoietic stem cells are evaluated by flow cytometric analysis of RFP-positive leukocytes of peripheral blood. Using this method, ~90% transduction of myeloid cells and ~70% of lymphoid cells at 4 weeks after transplantation can be achieved. Genomic DNA is isolated from RFP-positive blood cells, and portions of the targeted site DNA are amplified by PCR to validate the genome editing. This protocol provides a high-throughput evaluation of hematopoiesis-regulatory genes and can be extended to a variety of mouse disease models with hematopoietic cell involvement.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Animais , Sequência de Bases , Medula Óssea/efeitos da radiação , Células da Medula Óssea/citologia , Linhagem da Célula , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Polietilenoimina/química , RNA Guia de Cinetoplastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA