Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Geophys Res Lett ; 47(12): e2020GL088051, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32728302

RESUMO

Less than three decades ago only a small fraction of the Arctic Ocean (AO) was ice free and then only for short periods. The ice cover kept sea surface pCO2 at levels lower relative to other ocean basins that have been exposed year round to ever increasing atmospheric levels. In this study, we evaluate sea surface pCO2 measurements collected over a 6-year period along a fixed cruise track in the Canada Basin. The measurements show that mean pCO2 levels are significantly higher during low ice years. The pCO2 increase is likely driven by ocean surface heating and uptake of atmospheric CO2 with large interannual variability in the contributions of these processes. These findings suggest that increased ice-free periods will further increase sea surface pCO2, reducing the Canada Basin's current role as a net sink of atmospheric CO2.

2.
Ann Rev Mar Sci ; 13: 23-55, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956015

RESUMO

Oceanic uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have impacts on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO2-induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid-base buffer capacity. In this article, we review how a variety of processes influence aquatic acid-base properties in estuarine waters, including coastal upwelling, river-ocean mixing, air-water gas exchange, biological production and subsequent aerobic and anaerobic respiration, calcium carbonate (CaCO3) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO2 (pCO2), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries-Chesapeake Bay, the Salish Sea, and Prince William Sound-are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers.


Assuntos
Atmosfera/química , Carbonato de Cálcio/análise , Dióxido de Carbono/análise , Estuários , Rios/química , Água do Mar/química , Oceano Atlântico , Ciclo do Carbono , Mudança Climática , Ecossistema , Eutrofização , Concentração de Íons de Hidrogênio , Desenvolvimento Industrial , América do Norte , Oceano Pacífico
3.
PLoS One ; 15(9): e0238432, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881918

RESUMO

The carbonate system in two contrasting fjords, Rivers Inlet and Bute Inlet, on the coast of British Columbia, Canada, was evaluated to characterize the mechanisms driving carbonate chemistry dynamics and assess the impact of anthropogenic carbon. Differences in the character of deep water exchange between these fjords were inferred from their degree of exposure to continental shelf water and their salinity relationships with total alkalinity and total dissolved inorganic carbon, which determined seawater buffering capacity. Seawater buffering capacity differed between fjords and resulted in distinct carbonate system characteristics with implications on calcium carbonate saturation states and sensitivity to increasing anthropogenic carbon inputs. Saturation states of both aragonite and calcite mineral phases of calcium carbonate were seasonally at or below saturation throughout the entire water column in Bute Inlet, while only aragonite was seasonally under-saturated in portions of the water column in Rivers Inlet. The mean annual saturation states of aragonite in Rivers Inlet and calcite in Bute Inlet deep water layers have declined to below saturation within the last several decades due to anthropogenic carbon accumulation, and similar declines to undersaturation are projected in their surface layers as anthropogenic carbon continues to accumulate. This study demonstrates that the degree of fjord water exposure to open shelf water influences the uptake and sensitivity to anthropogenic carbon through processes affecting seawater buffering capacity, and that reduced uptake but greater sensitivity occurs where distance to ocean source waters and freshwater dilution are greater.


Assuntos
Carbonatos/análise , Monitoramento Ambiental/métodos , Água do Mar/química , Colúmbia Britânica , Carbonato de Cálcio/química , Carbono/química , Dióxido de Carbono/análise , Ecossistema , Estuários , Concentração de Íons de Hidrogênio , Salinidade , Água do Mar/análise
4.
PLoS One ; 10(7): e0130384, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26131723

RESUMO

The invasion of anthropogenic carbon dioxide (CO2) into the ocean is shifting the marine carbonate system such that saturation states of calcium carbonate (CaCO3) minerals are decreasing, and this is having a detrimental impact on early life stages of select shellfish species. The global, secular decrease in CaCO3 saturation states is occurring on top of a backdrop of large natural variability in coastal settings; progressively shifting the envelope of variability and leading to longer and more frequent exposure to adverse conditions. This is a great concern in the State of Alaska, a high-latitude setting vulnerable to rapid changes in the marine carbonate system, where an emerging shellfish industry plans major growth over the coming decades. Currently, the Alutiiq Pride Shellfish Hatchery (APSH) in Seward, Alaska is the only hatchery in the state, and produces many shellfish species with early life stages known to be sensitive to low CaCO3 saturation states. Here we present the first land-based OA measurements made in an Alaskan shellfish hatchery, and detail the trends in the saturation state of aragonite (Ωarag), the more soluble form of CaCO3, over a 10-month period in the APSH seawater supply. These data indicate the largest changes are on the seasonal time scale, with extended periods of sub-optimal Ωarag levels (Ωarag < 1.5) in winter and autumn associated with elevated water column respiration and short-lived runoff events, respectively. The data pinpoint a 5-month window of reprieve with favorable Ωarag conditions above the sub-optimal Ωarag threshold, which under predicted upper-bound CO2 emissions trajectories is estimated to close by 2040. To date, many species in production at APSH remain untested in their response to OA, and the data presented here establish the current conditions at APSH as well as provide a framework for hatchery-based measurements in Alaska. The current and expected conditions seen at APSH are essential to consider for this developing Alaskan industry.


Assuntos
Aquicultura , Carbonato de Cálcio/análise , Dióxido de Carbono/análise , Água do Mar/química , Frutos do Mar , Alaska , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA