Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Eur J Nutr ; 62(1): 407-417, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36071290

RESUMO

PURPOSE: Protein synthesis and proteolysis are known to be controlled through mammalian target of rapamycin, AMP-activated kinase (AMPK) and general control non-derepressible 2 (GCN2) pathways, depending on the nutritional condition. This study aimed at investigating the contribution of liver AMPK and GCN2 on the adaptation to high variations in protein intake. METHODS: To evaluate the answer of protein pathways to high- or low-protein diet, male wild-type mice and genetically modified mice from C57BL/6 background with liver-specific AMPK- or GCN2-knockout were fed from day 25 diets differing in their protein level as energy: LP (5%), NP (14%) and HP (54%). Two hours after a 1 g test meal, protein synthesis rate was measured after a 13C valine flooding dose. The gene expression of key enzymes involved in proteolysis and GNC2 signaling pathway were quantified. RESULTS: The HP diet but not the LP diet was associated with a decrease in fractional synthesis rate by 29% in the liver compared to NP diet. The expression of mRNA encoding ubiquitin and Cathepsin D was not sensitive to the protein content. The deletion of AMPK or GCN2 in the liver did not affect nor protein synthesis rates and neither proteolysis markers in the liver or in the muscle, whatever the protein intake. In the postprandial state, protein level alters protein synthesis in the liver but not in the muscle. CONCLUSIONS: Taken together, these results suggest that liver AMPK and GCN2 are not involved in this adaptation to high- and low-protein diet observed in the postprandial period.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas Serina-Treonina Quinases , Camundongos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Dieta com Restrição de Proteínas , Período Pós-Prandial , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Mamíferos/metabolismo
2.
Am J Physiol Endocrinol Metab ; 322(2): E154-E164, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927458

RESUMO

Protein requirement has been determined at 10%-15% energy. Under dietary self-selection, rats ingest 25%-30% energy as protein and regulate FGF21 (a hormone signaling protein deficiency) to levels lower than those measured with a 15% protein (15P) diet. Our hypothesis is that if a 15P diet was indeed sufficient to ensure protein homeostasis, it is probably a too low protein level to ensure optimal energy homeostasis. Adult male Wistar rats were used in this study. The first objective was to determine the changes in food intake, body composition, and plasma FGF21, IGF-1, and PYY concentrations in rats fed 8P, 15P, 30P, 40P, or 50P diets. The second was to determine whether the FGF21 levels measured in the rats were related to spontaneous protein intake. Rats were fed a 15P diet and then allowed to choose between a protein diet and a protein-free diet. Food intake and body weight were measured throughout the experiments. Body composition was determined at different experimental stages. Plasma samples were collected to measure FGF21, IGF-1, and PYY concentrations. A 15P diet appears to result in higher growth than that observed with the 30P, 40P, and 50P diets. However, the 15P diet probably does not provide optimal progression of body composition owing to a tendency of 15P rats to fix more fat and energy in the body. The variable and higher concentrations of FGF21 in the 15P diet suggest a deficit in protein intake, but this does not appear to be a parameter reflecting the adequacy of protein intake relative to individual protein requirements.NEW & NOTEWORTHY Under dietary self-selection, rats choose to ingest 25%-30% of energy as protein, a value higher than the protein requirement (10%-15%). According to our results, this higher spontaneous intake reflects the fact that rats fed a 15% protein diet, compared with high-protein diets, tend to bind more fat and have higher concentrations of FGF21, a hormone signaling protein deficiency. A 15% protein diet appears to be sufficient for protein homeostasis but not for optimal energy homeostasis.


Assuntos
Composição Corporal/fisiologia , Dieta Rica em Proteínas , Dieta com Restrição de Proteínas , Ingestão de Alimentos/fisiologia , Fatores de Crescimento de Fibroblastos/sangue , Preferências Alimentares/fisiologia , Animais , Ingestão de Energia , Metabolismo Energético/fisiologia , Fator de Crescimento Insulin-Like I/análise , Masculino , Peptídeo YY/sangue , Ratos , Ratos Wistar
3.
Am J Physiol Endocrinol Metab ; 321(5): E621-E635, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569272

RESUMO

Amino acids are involved in energy homeostasis, just as are carbohydrates and lipids. Therefore, mechanisms controlling protein intake should operate independently and in combination with systems controlling overall energy intake to coordinate appropriate metabolic and behavioral responses. The objective of this study was to quantify the respective roles of dietary protein and carbohydrate levels on energy balance, plasma fibroblast growth factor 21 (FGF21) and insulin growth factor 1 (IGF-1) concentrations, and hypothalamic neurotransmitters (POMC, NPY, AgRP, and CART). In a simplified geometric framework, 7-wk-old male Wistar rats were fed 12 diets containing 3%-30% protein for 3 wk, in which carbohydrates accounted for 30%-75% of the carbohydrate and fat part of the diet. As a result of this study, most of the studied parameters (body composition, energy expenditure, plasma FGF21 and IGF-1 concentrations, and Pomc/Agrp ratio) responded mainly to the protein content and to a lesser extent to the carbohydrate content in the diet.NEW & NOTEWORTHY As mechanisms controlling protein intake can operate independently and in combination with those controlling energy intakes, we investigated the metabolic and behavioral effects of the protein-carbohydrate interaction. With a simplified geometric framework, we showed that body composition, energy balance, plasma FGF21 and IGF-1 concentrations, and hypothalamic Pomc/Agrp ratio were primarily responsive to protein content and, to a lesser extent, to carbohydrate content of the diet.


Assuntos
Carboidratos da Dieta/farmacologia , Proteínas Alimentares/farmacologia , Metabolismo Energético/fisiologia , Fatores de Crescimento de Fibroblastos/biossíntese , Hipotálamo/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Composição Corporal/efeitos dos fármacos , Expressão Gênica , Fator de Crescimento Insulin-Like I/biossíntese , Fator de Crescimento Insulin-Like I/genética , Masculino , Neurotransmissores/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Wistar
4.
J Nutr ; 151(7): 1921-1936, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830241

RESUMO

BACKGROUND: Under dietary self-selection (DSS), rats ingest 25-30% of energy as protein. This high level appears to be explained by metabolic benefits related to reduced carbohydrate dependence and associated pathologies. However, the mechanisms underlying these choices remain largely misunderstood. OBJECTIVES: The aim was to test the hypothesis that in a DSS model, rats select a protein-to-energy (PE) ratio to maintain the protein-to-carbohydrate (PC) ratio constant and that fibroblast growth factor 21 (FGF21) is involved in this response. METHODS: Adult male Wistar rats were used in 3 experiments. The first was to determine whether the PE ratio was influenced by changes in carbohydrate content. The second was to test whether the PE ratio was defended with a modified DSS model. The third was to determine whether the selected PE ratio was of metabolic interest compared with a standard 15% protein diet. Food intake, body weight, and energy expenditure were measured. After 3 wk, plasma was sampled and rats were killed to determine body composition and gene expression. Statistical analyses were mainly done by ANOVA tests and correlation tests. RESULTS: The selected PE ratio increased from 20% to 35% when the carbohydrate content of the protein-free diet increased from 30% to 75% (R2 = 0.56; P < 10-6). Consequently, the PC ratio was constant (70%) in all groups (P = 0.18). In self-selecting rats, plasma FGF21 concentrations were 3 times lower than in rats fed the 5% protein diet (P < 10-4) and similar to those in rats fed a 30% diet. CONCLUSIONS: This study showed that self-selecting rats established PE ratios larger than those considered sufficient to achieve optimal growth in adult rats (10-15%), and the ratios were highly dependent on carbohydrates, apparently with the aim of maintaining a constant and high PC ratio. This was associated with a minimization of plasma FGF21.


Assuntos
Carboidratos da Dieta , Fígado , Animais , Dieta com Restrição de Proteínas , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/metabolismo , Ingestão de Energia , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar
5.
Am J Physiol Endocrinol Metab ; 317(6): E1015-E1021, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31573843

RESUMO

General control nonderepressible 2 (GCN2) is a kinase that detects amino acid deficiency and is involved in the control of protein synthesis and energy metabolism. However, the role of hepatic GCN2 in the metabolic adaptations in response to the modulation of dietary protein has been seldom studied. Wild-type (WT) and liver GCN2-deficient (KO) mice were fed either a normo-protein diet, a low-protein diet, or a high-protein diet for 3 wk. During this period, body weight, food intake, and metabolic parameters were followed. In mice fed normo- and high-protein diets, GCN2 pathway in the liver is not activated in WT mice, leading to a similar metabolic profile with the one of KO mice. On the contrary, a low-protein diet activates GCN2 in WT mice, inducing FGF21 secretion. In turn, FGF21 maintains a high level of lipid oxidation, leading to a different postprandial oxidation profile compared with KO mice. Hepatic GCN2 controls FGF21 secretion under a low-protein diet and modulates a whole body postprandial oxidation profile.


Assuntos
Dieta com Restrição de Proteínas , Metabolismo Energético/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/genética , Tecido Adiposo/metabolismo , Animais , Composição Corporal , Peso Corporal , Dieta Rica em Proteínas , Comportamento Alimentar , Glucose/metabolismo , Glicogênio/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Oxirredução , Período Pós-Prandial , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R486-R501, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735436

RESUMO

Low-protein diets most often induce increased energy intake in an attempt to increase protein intake to meet protein needs with a risk of accumulation as fat of the excess energy intake. In female adult BALB/c mice, a decrease in dietary casein from 20% to 6% and 3% increased energy intake and slightly increased adiposity, and this response was exacerbated with soy proteins with low methionine content. The effect on fat mass was however limited because total energy expenditure increased to the same extent as energy intake. Lean body mass was preserved in all 6% fed mice and reduced only in 3% casein-fed animals. Insulin response to an oral glucose tolerance test was reduced in soy-fed mice and in low-protein-fed mice. Low-protein diets did not affect uncoupling protein 1 and increased fibroblast growth factor 21 (FGF21) in brown adipose tissue and increased FGF21, fatty acid synthase, and cluster of differentiation 36 in the liver. In the hypothalamus, neuropeptide Y was increased and proopiomelanocortin was decreased only in 3% casein-fed mice. In plasma, when protein was decreased, insulin-like growth factor-1 decreased and FGF21 increased and plasma FGF21 was best described by using a combination of dietary protein level, protein-to-carbohydrate ratio, and protein-to-methionine ratio in the diet. In conclusion, reducing dietary protein and protein quality increases energy intake but also energy expenditure resulting in an only slight increase in adiposity. In this process, FGF21 is probably an important signal that responds to a complex combination of protein restriction, protein quality, and carbohydrate content of the diet.


Assuntos
Adiposidade , Dieta com Restrição de Proteínas , Carboidratos da Dieta/administração & dosagem , Ingestão de Energia , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Metionina/deficiência , Valor Nutritivo , Amido/administração & dosagem , Tecido Adiposo/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomarcadores , Carboidratos da Dieta/metabolismo , Regulação para Baixo , Feminino , Hipotálamo/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Amido/metabolismo , Regulação para Cima
7.
J Nutr ; 149(2): 270-279, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753533

RESUMO

BACKGROUND: We have reported large differences in adiposity (fat mass/body weight) gain between rats fed a low-fat, high-starch diet, leading to their classification into carbohydrate "sensitive" and "resistant" rats. In sensitive animals, fat accumulates in visceral adipose tissues, leading to the suggestion that this form of obesity could be responsible for rapid development of metabolic syndrome. OBJECTIVE: We investigated whether increased amylase secretion by the pancreas and accelerated starch degradation in the intestine could be responsible for this phenotype. METHOD: Thirty-two male Wistar rats (7-wk-old) were fed a purified low-fat (10%), high-carbohydrate diet for 6 wk, in which most of the carbohydrate (64% by energy) was provided as corn starch. Meal tolerance tests of the Starch diet were performed to measure glucose and insulin responses to meal ingestion. Indirect calorimetry combined with use of 13C-labelled dietary starch was used to assess meal-induced changes in whole body and starch-derived glucose oxidation. Real-time polymerase chain reaction was used to assess mRNA expression in pancreas, liver, white and brown adipose tissues, and intestine. Amylase activity was measured in the duodenum, jejunum, and ileum contents. ANOVA and regression analyses were used for statistical comparisons. RESULTS: "Resistant" and "sensitive" rats were separated according to adiposity gain during the study (1.73% ± 0.20% compared with 4.35% ± 0.36%). Breath recovery of 13CO2 from 13C-labelled dietary starch was higher in "sensitive" rats, indicating a larger increase in whole body glucose oxidation and, conversely, a larger decrease in lipid oxidation. Amylase mRNA expression in pancreas, and amylase activity in jejunum, were also higher in sensitive rats. CONCLUSION: Differences in digestion of starch can promote visceral fat accumulation in rats when fed a low-fat, high-starch diet. This mechanism may have important implications in human obesity.


Assuntos
Amilases/metabolismo , Carboidratos da Dieta/efeitos adversos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Obesidade/induzido quimicamente , Pâncreas/enzimologia , Amilases/genética , Animais , Glicemia , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta , Insulina/sangue , Insulina/metabolismo , Masculino , Refeições , Polissacarídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Amido , Aumento de Peso
8.
Am J Physiol Endocrinol Metab ; 314(2): E139-E151, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29138228

RESUMO

Low protein (LP)-containing diets can induce overeating in rodents and possibly in humans in an effort to meet protein requirement, but the effects on energy expenditure (EE) are unclear. The present study evaluated the changes induced by reducing dietary protein from 20% to 6%-using either soy protein or casein-on energy intake, body composition, and EE in mice housed at 22°C or at 30°C (thermal neutrality). LP feeding increased energy intake and adiposity, more in soy-fed than in casein-fed mice, but also increased EE, thus limiting fat accumulation. The increase in EE was due mainly to an increase in spontaneous motor activity related to EE and not to thermoregulation. However, the high cost of thermoregulation at 22°C and the subsequent heat exchanges between nonshivering thermogenesis, motor activity, and feeding induced large differences in adaptation between mice housed at 22°C and at 30°C.


Assuntos
Adiposidade/fisiologia , Regulação da Temperatura Corporal , Dieta com Restrição de Proteínas/efeitos adversos , Proteínas Alimentares , Hiperfagia/etiologia , Atividade Motora/fisiologia , Adiposidade/efeitos dos fármacos , Animais , Composição Corporal/fisiologia , Regulação da Temperatura Corporal/efeitos dos fármacos , Regulação da Temperatura Corporal/fisiologia , Dieta com Restrição de Proteínas/classificação , Dieta com Restrição de Proteínas/normas , Proteínas Alimentares/classificação , Proteínas Alimentares/farmacologia , Proteínas Alimentares/normas , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Feminino , Hiperfagia/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
9.
Int J Mol Sci ; 19(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235785

RESUMO

The energy sensor AMP-activated protein kinase (AMPK) is a key player in the control of energy metabolism. AMPK regulates hepatic lipid metabolism through the phosphorylation of its well-recognized downstream target acetyl CoA carboxylase (ACC). Although AMPK activation is proposed to lower hepatic triglyceride (TG) content via the inhibition of ACC to cause inhibition of de novo lipogenesis and stimulation of fatty acid oxidation (FAO), its contribution to the inhibition of FAO in vivo has been recently questioned. We generated a mouse model of AMPK activation specifically in the liver, achieved by expression of a constitutively active AMPK using adenoviral delivery. Indirect calorimetry studies revealed that liver-specific AMPK activation is sufficient to induce a reduction in the respiratory exchange ratio and an increase in FAO rates in vivo. This led to a more rapid metabolic switch from carbohydrate to lipid oxidation during the transition from fed to fasting. Finally, mice with chronic AMPK activation in the liver display high fat oxidation capacity evidenced by increased [C14]-palmitate oxidation and ketone body production leading to reduced hepatic TG content and body adiposity. Our findings suggest a role for hepatic AMPK in the remodeling of lipid metabolism between the liver and adipose tissue.


Assuntos
Ácidos Graxos/metabolismo , Fígado/metabolismo , Proteínas Quinases/metabolismo , Triglicerídeos/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Tecido Adiposo/metabolismo , Animais , Metabolismo Energético , Jejum/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Açúcares/metabolismo
10.
J Nutr ; 147(9): 1669-1676, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28747486

RESUMO

Background: Hepatic AMP-activated kinase (AMPK) activity is sensitive to the dietary carbohydrate-to-protein ratio. However, the role of AMPK in metabolic adaptations to variations in dietary macronutrients remains poorly understood.Objective: The objective of this study was to determine the role of hepatic AMPK in the adaptation of energy metabolism in response to modulation of the dietary carbohydrate-to-protein ratio.Methods: Male 7-wk-old wild-type (WT) and liver AMPK-deficient (knockout) mice were fed either a normal-protein and normal-carbohydrate diet (NP-NC; 14% protein, 76% carbohydrate on an energy basis), a low-protein and high-carbohydrate diet (LP-HC; 5% protein, 85% carbohydrate), or a high-protein and low-carbohydrate diet (HP-LC; 55% protein, 35% carbohydrate) for 3 wk. During this period, after an overnight fast, metabolic parameters were measured and indirect calorimetry was performed in mice during the first hours after refeeding a 1-g calibrated meal of their own diet in order to investigate lipid and carbohydrate metabolism.Results: Knockout mice fed an LP-HC or HP-LC meal exhibited 24% and 8% lower amplitudes in meal-induced carbohydrate and lipid oxidation changes. By contrast, knockout mice fed an NP-NC meal displayed normal carbohydrate and lipid oxidation profiles. These mice exhibited a transient increase in hepatic triglycerides and a decrease in hepatic glycogen. These changes were associated with a 650% higher secretion of fibroblast growth factor 21 (FGF21) 2 h after refeeding.Conclusions: The consequences of hepatic AMPK deletion depend on the dietary carbohydrate-to-protein ratio. In mice fed the NP-NC diet, deletion of AMPK in the liver led to an adaptation of liver metabolism resulting in increased secretion of FGF21. These changes possibly compensated for the absence of hepatic AMPK, as these mice exhibited normal postprandial changes in carbohydrate and lipid oxidation. By contrast, in mice fed the LP-HC and HP-LC diets, the lack of adjustment in liver metabolism in knockout mice resulted in a metabolic inflexibility, leading to a reduced amplitude of meal-induced changes in carbohydrate and lipid oxidation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo dos Carboidratos , Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Período Pós-Prandial , Proteínas Quinases Ativadas por AMP/deficiência , Adaptação Fisiológica , Animais , Dieta , Dieta com Restrição de Carboidratos , Dieta com Restrição de Proteínas , Carboidratos da Dieta/metabolismo , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Proteínas Alimentares/farmacologia , Metabolismo Energético/efeitos dos fármacos , Jejum , Fatores de Crescimento de Fibroblastos/metabolismo , Glicogênio/metabolismo , Fígado/metabolismo , Masculino , Refeições , Camundongos Knockout , Oxirredução , Triglicerídeos/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 311(4): R771-R778, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581809

RESUMO

We aimed to determine whether oxidative pathways adapt to the overproduction of carbon skeletons resulting from the progressive activation of amino acid (AA) deamination and ureagenesis under a high-protein (HP) diet. Ninety-four male Wistar rats, of which 54 were implanted with a permanent jugular catheter, were fed a normal protein diet for 1 wk and were then switched to an HP diet for 1, 3, 6, or 14 days. On the experimental day, they were given their meal containing a mixture of 20 U-[15N]-[13C] AA, whose metabolic fate was followed for 4 h. Gastric emptying tended to be slower during the first 3 days of adaptation. 15N excretion in urine increased progressively during the first 6 days, reaching 29% of ingested protein. 13CO2 excretion was maximal, as early as the first day, and represented only 16% of the ingested proteins. Consequently, the amount of carbon skeletons remaining in the metabolic pools 4 h after the meal ingestion progressively increased to 42% of the deaminated dietary AA after 6 days of HP diet. In contrast, 13C enrichment of plasma glucose tended to increase from 1 to 14 days of the HP diet. We conclude that there is no oxidative adaptation in the early postprandial period to an excess of carbon skeletons resulting from AA deamination in HP diets. This leads to an increase in the postprandial accumulation of carbon skeletons throughout the adaptation to an HP diet, which can contribute to the sustainable satiating effect of this diet.


Assuntos
Adaptação Fisiológica/fisiologia , Aminoácidos/metabolismo , Carbono/metabolismo , Proteínas Alimentares/metabolismo , Período Pós-Prandial/fisiologia , Administração Oral , Animais , Esvaziamento Gástrico/fisiologia , Masculino , Ratos , Ratos Wistar , Micção/fisiologia
12.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1169-76, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27030668

RESUMO

We tested the hypothesis that, for rats fed a high-fat diet (HFD), a prioritization of maintaining protein intake may increase energy consumption and hence result in obesity, particularly for individuals prone to obesity ("fat sensitive," FS, vs. "fat resistant," FR). Male Wistar rats (n = 80) first received 3 wk of HFD (protein 15%, fat 42%, carbohydrate 42%), under which they were characterized as being FS (n = 18) or FR (n = 20) based on body weight gain. They then continued on the same HFD but in which protein (100%) was available separately from the carbohydrate:fat (50:50%) mixture. Under this second regimen, all rats maintained their previous protein intake, whereas intake of fat and carbohydrate was reduced by 50%. This increased protein intake to 26% and decreased fat intake to 37%. Adiposity gain was prevented in both FR and FS rats, and gain in fat-free mass was increased only in FS rats. At the end of the study, the rats were killed 2 h after ingestion of a protein meal, and their tissues and organs were collected for analysis of body composition and measurement of mRNA levels in the liver, adipose tissue, arcuate nucleus, and nucleus accumbens. FS rats had a higher expression of genes encoding enzymes involved in lipogenesis in the liver and white adipose tissue. These results show that FS rats strongly reduced food intake and adiposity gain through macronutrient selection, despite maintenance of a relatively high-fat intake and overexpression of genes favoring lipogenesis.


Assuntos
Adiposidade , Dieta Hiperlipídica , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Ingestão de Energia , Obesidade/fisiopatologia , Animais , Masculino , Ratos , Ratos Wistar
13.
Proc Natl Acad Sci U S A ; 110(11): 4333-8, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23440210

RESUMO

The nuclear receptor Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) is an important coordinator of glucose homeostasis through its function in different organs such as the endocrine pancreas, adipose tissue, skeletal muscle, and liver. Recently we have demonstrated that COUP-TFII expression in the hypothalamus is restricted to a subpopulation of neurons expressing the steroidogenic factor 1 transcription factor, known to play a crucial role in glucose homeostasis. To understand the functional significance of COUP-TFII expression in the steroidogenic factor 1 neurons, we generated hypothalamic ventromedial nucleus-specific COUP-TFII KO mice using the cyclization recombination/locus of X-overP1 technology. The heterozygous mutant mice display insulin hypersensitivity and a leaner phenotype associated with increased energy expenditure and similar food intake. These mutant mice also present a defective counterregulation to hypoglycemia with altered glucagon secretion. Moreover, the mutant mice are more likely to develop hypoglycemia-associated autonomic failure in response to recurrent hypoglycemic or glucopenic events. Therefore, COUP-TFII expression levels in the ventromedial nucleus are keys in the ability to resist the onset of hypoglycemia-associated autonomic failure.


Assuntos
Fator II de Transcrição COUP/biossíntese , Glucose/metabolismo , Hipoglicemia/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Neurônios/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Doenças do Sistema Nervoso Autônomo/etiologia , Doenças do Sistema Nervoso Autônomo/genética , Doenças do Sistema Nervoso Autônomo/metabolismo , Doenças do Sistema Nervoso Autônomo/patologia , Fator II de Transcrição COUP/genética , Galinhas , Glucose/genética , Heterozigoto , Hipoglicemia/complicações , Hipoglicemia/genética , Hipoglicemia/patologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Especificidade de Órgãos/genética , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Núcleo Hipotalâmico Ventromedial/patologia
14.
Br J Nutr ; 114(8): 1132-42, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26285832

RESUMO

High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the effects of high protein intake on the development of fat deposition and partitioning in response to high-fat and/or HS feeding. A total of thirty adult male Wistar rats were assigned to one of the six dietary regimens with low and high protein, sucrose and fat contents for 5 weeks. Body weight (BW) and food intake were measured weekly. Oral glucose tolerance tests and meal tolerance tests were performed after 4th and 5th weeks of the regimen, respectively. At the end of the study, the rats were killed 2 h after ingestion of a calibrated meal. Blood, tissues and organs were collected for analysis of circulating metabolites and hormones, body composition and mRNA expression in the liver and adipose tissues. No changes were observed in cumulative energy intake and BW gain after 5 weeks of dietary treatment. However, high-protein diets reduced by 20 % the adiposity gain induced by HS and high-sucrose high-fat (HS-HF) diets. Gene expression and transcriptomic analysis suggested that high protein intake reduced liver capacity for lipogenesis by reducing mRNA expressions of fatty acid synthase (fasn), acetyl-CoA carboxylase a and b (Acaca and Acacb) and sterol regulatory element binding transcription factor 1c (Srebf-1c). Moreover, ketogenesis, as indicated by plasma ß-hydroxybutyrate levels, was higher in HS-HF-fed mice that were also fed high protein levels. Taken together, these results suggest that high-protein diets may reduce adiposity by inhibiting lipogenesis and stimulating ketogenesis in the liver.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteínas Alimentares/administração & dosagem , Sacarose Alimentar/efeitos adversos , Lipogênese , Ácido 3-Hidroxibutírico/sangue , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Adiposidade , Animais , Glicemia/metabolismo , Composição Corporal , Peso Corporal , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Gorduras na Dieta/administração & dosagem , Sacarose Alimentar/administração & dosagem , Ingestão de Energia , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Grelina/sangue , Teste de Tolerância a Glucose , Hipotálamo/metabolismo , Leptina/sangue , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/sangue
15.
Am J Physiol Regul Integr Comp Physiol ; 307(3): R299-309, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24898839

RESUMO

Obesity-prone (OP) rodents are used as models of human obesity predisposition. The goal of the present study was to identify preexisting defects in energy expenditure components in OP rats. Two studies were performed. In the first one, male Wistar rats (n = 48) were fed a high-carbohydrate diet (HCD) for 3 wk and then a high-fat diet (HFD) for the next 3 wk. This study showed that adiposity gain under HCD was 2.9-fold larger in carbohydrate-sensitive (CS) than in carbohydrate-resistant (CR) rats, confirming the concept of "carbohydrate-sensitive" rats. Energy expenditure (EE), respiratory quotient (RQ), caloric intake (CI), and locomotor activity measured during HFD identified no differences in EE and RQ between fat-resistant (FR) and fat-sensitive (FS) rats, and indicated that obesity developed in FS rats only as the result of a larger CI not fully compensated by a parallel increase in EE. A specific pattern of spontaneous activity, characterized by reduced activity burst intensity, was identified in FS rats but not in CS ones. This mirrors a previous observation that under HCD, CS but not FS rats, exhibited bursts of activity of reduced intensity. In a second study, rats were fed a HFD for 3 wk, and the components of energy expenditure were examined by indirect calorimetry in 10 FR and 10 FS rats. This study confirmed that a low basal EE, reduced thermic effect of feeding, defective postprandial energy partitioning, or a defective substrate utilization by the working muscle are not involved in the FS phenotype.


Assuntos
Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Obesidade/genética , Obesidade/fisiopatologia , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Calorimetria Indireta , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Predisposição Genética para Doença/genética , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Ratos , Ratos Wistar
16.
Br J Nutr ; 110(4): 625-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23321004

RESUMO

Lactose malabsorption is associated with rapid production of high levels of osmotic compounds, such as organic acids and SCFA in the colon, suspected to contribute to the onset of lactose intolerance. Adult rats are lactase deficient and the present study was conducted to evaluate in vivo the metabolic consequences of acute lactose ingestion, including host-microbiota interactions. Rats received diets of 25% sucrose (S25 control group) or 25% lactose (L25 experimental group). SCFA and lactic acid were quantified in intestinal contents and portal blood. Expression of SCFA transporter genes was quantified in the colonic mucosa. Carbohydrate oxidation (Cox) and lipid oxidation (Lox) were computed by indirect calorimetry. Measurements were performed over a maximum of 13 h. Time, diet and time × diet variables had significant effects on SCFA concentration in the caecum (P<0·001, P=0·004 and P=0·007, respectively) and the portal blood (P<0·001, P=0·04 and P<0·001, respectively). Concomitantly, expression of sodium monocarboxylate significantly increased in the colonic mucosa of the L25 group (P=0·003 at t = 6 h and P<0·05 at t = 8 h). During 5 h after the meal, the L25 group's changes in metabolic parameters (Cox, Lox) were significantly lower than those of the S25 group (P=0·02). However, after 5 h, L25 Cox became greater than S25 (P=0·004). Thus, enhanced production and absorption of SCFA support the metabolic changes observed in calorimetry. These results underline the consequences of acute lactose malabsorption and measured compensations occurring in the host's metabolism, presumably through the microbiota fermentations and microbiota-host interactions.


Assuntos
Colo/metabolismo , Fermentação , Intolerância à Lactose/metabolismo , Ração Animal , Animais , Metabolismo dos Carboidratos , Colo/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lactase/metabolismo , Lactose/metabolismo , Metabolismo dos Lipídeos , Masculino , Oxigênio/metabolismo , Ratos , Ratos Wistar
17.
Am J Physiol Regul Integr Comp Physiol ; 303(5): R459-76, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22718809

RESUMO

In this article, we review some fundamentals of indirect calorimetry in mice and rats, and open the discussion on several debated aspects of the configuration and tuning of indirect calorimeters. On the particularly contested issue of adjustment of energy expenditure values for body size and body composition, we discuss several of the most used methods and their results when tested on a previously published set of data. We conclude that neither body weight (BW), exponents of BW, nor lean body mass (LBM) are sufficient. The best method involves fitting both LBM and fat mass (FM) as independent variables; for low sample sizes, the model LBM + 0.2 FM can be very effective. We also question the common calorimetry design that consists of measuring respiratory exchanges under free-feeding conditions in several cages simultaneously. This imposes large intervals between measures, and generally limits data analysis to mean 24 h or day-night values of energy expenditure. These are then generally compared with energy intake. However, we consider that, among other limitations, the measurements of Vo(2), Vco(2), and food intake are not precise enough to allow calculation of energy balance in the small 2-5% range that can induce significant long-term alterations of energy balance. In contrast, we suggest that it is necessary to work under conditions in which temperature is set at thermoneutrality, food intake totally controlled, activity precisely measured, and data acquisition performed at very high frequency to give access to the part of the respiratory exchanges that are due to activity. In these conditions, it is possible to quantify basal energy expenditure, energy expenditure associated with muscular work, and response to feeding or to any other metabolic challenge. This reveals defects in the control of energy metabolism that cannot be observed from measurements of total energy expenditure in free feeding individuals.


Assuntos
Calorimetria Indireta/métodos , Metabolismo Energético/fisiologia , Camundongos/fisiologia , Ratos/fisiologia , Animais , Animais de Laboratório , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Respiração
18.
Nutrients ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615854

RESUMO

The objective of this study is to evaluate the effects of a strictly essential amino acid (lysine or threonine; EAA) deficiency on energy metabolism in growing rats. Rats were fed for three weeks severely (15% and 25% of recommendation), moderately (40% and 60%), and adequate (75% and 100%) lysine or threonine-deficient diets. Food intake and body weight were measured daily and indirect calorimetry was performed the week three. At the end of the experimentation, body composition, gene expression, and biochemical analysis were performed. Lysine and threonine deficiency induced a lower body weight gain and an increase in relative food intake. Lysine or threonine deficiency induced liver FGF21 synthesis and plasma release. However, no changes in energy expenditure were observed for lysine deficiency, unlike threonine deficiency, which leads to a decrease in total and resting energy expenditure. Interestingly, threonine severe deficiency, but not lysine deficiency, increase orexigenic and decreases anorexigenic hypothalamic neuropeptides expression, which could explain the higher food intake. Our results show that the deficiency in one EAA, induces a decrease in body weight gain, despite an increased relative food intake, without any increase in energy expenditure despite an induction of FGF21.


Assuntos
Lisina , Treonina , Ratos , Animais , Peso Corporal , Aumento de Peso , Metabolismo Energético , Ingestão de Alimentos/fisiologia
19.
Obes Rev ; 22(6): e13194, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33403737

RESUMO

Omnivores are able to correctly select adequate amounts of macronutrients from natural foods as well as purified macronutrients. In the rat model, the selected protein levels are often well above the requirements estimated from the nitrogen balance. These high intake levels were initially interpreted as reflecting poor control of protein intake, but the selected levels were later found to be precisely controlled for changes in dietary protein quality and adjusted for cold, exercise, pregnancy, lactation, age, etc. and therefore met physiological requirements. Several authors have also suggested that instead of a given level of protein intake, rodents regulate a ratio of protein to dietary carbohydrates in order to achieve metabolic benefits such as reduced insulin levels, improved blood glucose control, and, in the long term, reduced weight and fat gain. The objective of this review was to analyze the most significant results of studies carried out on rats and mice since the beginning of the 20th century, to consider what these results can bring us to interpret the current causes of the obesity pandemic and to anticipate the possible consequences of policies aimed at reducing the contribution of animal proteins in the human diet.


Assuntos
Gorduras na Dieta , Proteínas Alimentares , Animais , Peso Corporal , Dieta , Carboidratos da Dieta , Ingestão de Energia , Feminino , Camundongos , Obesidade , Gravidez , Ratos
20.
Sci Rep ; 11(1): 12436, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127689

RESUMO

To study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Fatores de Crescimento de Fibroblastos/metabolismo , Hipotálamo/metabolismo , Fígado/metabolismo , Deficiência de Proteína/metabolismo , Animais , Modelos Animais de Doenças , Ingestão de Energia , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/sangue , Humanos , Masculino , Deficiência de Proteína/sangue , Ratos , Resposta de Saciedade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA