Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(22): 223802, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101384

RESUMO

Symmetries are ubiquitous in condensed matter physics, playing an important role in the appearance of different phases of matter. Nonlinear light matter interactions serve as a coherent probe for resolving symmetries and symmetry breaking via their link to selection rules of the interaction. In the extreme nonlinear regime, high harmonic generation (HHG) spectroscopy offers a unique spectroscopic approach to study this link, probing the crystal spatial properties with high sensitivity while opening new paths for selection rules in the XUV regime. In this Letter we establish an advanced HHG polarimetry scheme, driven by a multicolor strong laser field, to observe the structural symmetries of solids and their interplay with the HHG selection rules. By controlling the crystal symmetries, we resolve nontrivial polarization states associated with new spectral features in the HHG spectrum. Our scheme opens new opportunities in resolving the symmetries of quantum materials, as well as ultrafast light driven symmetries in condensed matter systems.

2.
Light Sci Appl ; 13(1): 41, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302449

RESUMO

The motion of laser-driven electrons quivers with an average energy termed pondermotive energy. We explore electron dynamics driven by bright squeezed vacuum (BSV), finding that BSV induces width oscillations, akin to electron quivering in laser light, with an equivalent ponderomotive energy. We identify closed and open trajectories of the electronic width that are associated with high harmonic generation and above-threshold ionization, respectively, similarly to trajectories of the electron position when its motion is driven by coherent light. In the case of bound electrons, the width oscillations may lead to ionization with noisy sub-cycle structure. Our results are foundational for strong-field and free-electron quantum optics, as they shed light on ionization, high harmonic generation, and nonlinear Compton scattering in BSV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA