Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Cardiovasc Magn Reson ; 26(1): 101032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38431079

RESUMO

BACKGROUND: Identification of increased pulmonary capillary wedge pressure (PCWP) by right heart catheterization (RHC) is the reference standard for the diagnosis of heart failure with preserved ejection fraction (HFpEF). Recently, cardiovascular magnetic resonance (CMR) imaging estimation of PCWP at rest was introduced as a non-invasive alternative. Since many patients are only identified during physiological exercise-stress, we hypothesized that novel exercise-stress CMR-derived PCWP emerges superior compared to its assessment at rest. METHODS: The HFpEF-Stress Trial prospectively recruited 75 patients with exertional dyspnea and diastolic dysfunction who then underwent rest and exercise-stress RHC and CMR. HFpEF was defined according to PCWP (overt HFpEF ≥15 mmHg at rest, masked HFpEF ≥25 mmHg during exercise-stress). CMR-derived PCWP was calculated based on previously published formula using left ventricular mass and either biplane left atrial volume (LAV) or monoplane left atrial area (LAA). RESULTS: LAV (rest/stress: r = 0.50/r = 0.55, p < 0.001) and LAA PCWP (rest/stress: r = 0.50/r = 0.48, p < 0.001) correlated significantly with RHC-derived PCWP while numerically overestimating PCWP at rest and underestimating PCWP during exercise-stress. LAV and LAA PCWP showed good diagnostic accuracy to detect HFpEF (area under the receiver operating characteristic curve (AUC) LAV rest 0.73, stress 0.81; LAA rest 0.72, stress 0.77) with incremental diagnostic value for the detection of masked HFpEF using exercise-stress (AUC LAV rest 0.54 vs stress 0.67, p = 0.019, LAA rest 0.52 vs stress 0.66, p = 0.012). LAV but not LAA PCWP during exercise-stress was a predictor for 24 months hospitalization independent of a medical history for atrial fibrillation (hazard ratio (HR) 1.26, 95% confidence interval 1.02-1.55, p = 0.032). CONCLUSION: Non-invasive PCWP correlates well with the invasive reference at rest and during exercise stress. There is overall good diagnostic accuracy for HFpEF assessment using CMR-derived estimated PCWP despite deviations in absolute agreement. Non-invasive exercise derived PCWP may particularly facilitate detection of masked HFpEF in the future.


Assuntos
Cateterismo Cardíaco , Teste de Esforço , Insuficiência Cardíaca , Valor Preditivo dos Testes , Pressão Propulsora Pulmonar , Volume Sistólico , Função Ventricular Esquerda , Humanos , Masculino , Feminino , Estudos Prospectivos , Idoso , Pessoa de Meia-Idade , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Descanso , Curva ROC , Reprodutibilidade dos Testes , Área Sob a Curva , Dispneia/fisiopatologia , Dispneia/etiologia , Dispneia/diagnóstico , Imageamento por Ressonância Magnética
2.
Int J Cardiol ; 404: 131949, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471649

RESUMO

BACKGROUND: With emerging therapies, early diagnosis of heart failure with preserved ejection fraction (HFpEF) comes to the fore. Whilst the reference standard of exercise-stress right heart catheterisation is well established, the clinical routine struggles between feasibility of exercise-stress and diagnostic accuracy of available tests. METHODS: The HFpEF Stress Trial (DZHK-17) prospectively enrolled 75 patients with exertional dyspnoea and echocardiographic signs of diastolic dysfunction (E/e' > 8) who underwent simultaneous rest and exercise-stress echocardiography and right heart catheterisation (RHC). HFpEF was defined according to pulmonary capillary wedge pressure (HFpEF: PCWP rest: ≥15 mmHg stress: ≥25 mmHg). Patients were classified as non-cardiac dyspnoea (NCD) in the absence of HFpEF and cardiovascular disease. LA compliance was defined as reservoir strain (Es)/(E/e'). Follow-up was conducted after 4 years to evaluate cardiovascular hospitalisation (CVH). RESULTS: The final study population included 68 patients (HFpEF n = 34 and NCD n = 34) of which 23 reached the clinical endpoint, 1 patient was lost to follow-up. Patients with HFpEF according to the HFA-PEFF score (≥5 points) had significantly lower LA compliance at rest (p < 0.001) compared to patients with a score ≤ 4. LA compliance at rest outperformed E/e' (AUC 0.78 vs 0.87, p = 0.024) and showed a statistical trend to outperform Es (AUC 0.79 vs 0.87, p = 0.090) for the diagnosis of HFpEF. LA compliance at rest predicted CVH (HR 2.83, 95% CI 1.70-4.74, p < 0.001) irrespective of concomitant atrial fibrillation. CONCLUSIONS: LA compliance at rest can be obtained from clinical routine imaging and bears strong diagnostic and prognostic accuracy. Addition of LA compliance can improve the role of echocardiography as the primary test and gatekeeper.


Assuntos
Insuficiência Cardíaca , Doenças não Transmissíveis , Humanos , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico , Prognóstico , Átrios do Coração , Dispneia , Função Ventricular Esquerda
3.
Circ Cardiovasc Imaging ; 17(7): e016424, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012942

RESUMO

BACKGROUND: It remains unknown to what extent intrinsic atrial cardiomyopathy or left ventricular diastolic dysfunction drive atrial remodeling and functional failure in heart failure with preserved ejection fraction (HFpEF). Computational 3-dimensional (3D) models fitted to cardiovascular magnetic resonance allow state-of-the-art anatomic and functional assessment, and we hypothesized to identify a phenotype linked to HFpEF. METHODS: Patients with exertional dyspnea and diastolic dysfunction on echocardiography (E/e', >8) were prospectively recruited and classified as HFpEF or noncardiac dyspnea based on right heart catheterization. All patients underwent rest and exercise-stress right heart catheterization and cardiovascular magnetic resonance. Computational 3D anatomic left atrial (LA) models were generated based on short-axis cine sequences. A fully automated pipeline was developed to segment cardiovascular magnetic resonance images and build 3D statistical models of LA shape and find the 3D patterns discriminant between HFpEF and noncardiac dyspnea. In addition, atrial morphology and function were quantified by conventional volumetric analyses and deformation imaging. A clinical follow-up was conducted after 24 months for the evaluation of cardiovascular hospitalization. RESULTS: Beyond atrial size, the 3D LA models revealed roof dilation as the main feature found in masked HFpEF (diagnosed during exercise-stress only) preceding a pattern shift to overall atrial size in overt HFpEF (diagnosed at rest). Characteristics of the 3D model were integrated into the LA HFpEF shape score, a biomarker to characterize the gradual remodeling between noncardiac dyspnea and HFpEF. The LA HFpEF shape score was able to discriminate HFpEF (n=34) to noncardiac dyspnea (n=34; area under the curve, 0.81) and was associated with a risk for atrial fibrillation occurrence (hazard ratio, 1.02 [95% CI, 1.01-1.04]; P=0.003), as well as cardiovascular hospitalization (hazard ratio, 1.02 [95% CI, 1.00-1.04]; P=0.043). CONCLUSIONS: LA roof dilation is an early remodeling pattern in masked HFpEF advancing to overall LA enlargement in overt HFpEF. These distinct features predict the occurrence of atrial fibrillation and cardiovascular hospitalization. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03260621.


Assuntos
Função do Átrio Esquerdo , Remodelamento Atrial , Átrios do Coração , Insuficiência Cardíaca , Imagem Cinética por Ressonância Magnética , Volume Sistólico , Função Ventricular Esquerda , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico , Feminino , Masculino , Volume Sistólico/fisiologia , Idoso , Átrios do Coração/fisiopatologia , Átrios do Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Estudos Prospectivos , Pessoa de Meia-Idade , Função Ventricular Esquerda/fisiologia , Imageamento Tridimensional , Cateterismo Cardíaco , Valor Preditivo dos Testes , Dispneia/fisiopatologia , Dispneia/etiologia , Dispneia/diagnóstico
4.
Int J Cardiovasc Imaging ; 40(7): 1585-1596, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878148

RESUMO

Heart failure (HF) is a heterogenous disease requiring precise diagnostics and knowledge of pathophysiological processes. Since structural and functional imaging data are scarce we hypothesized that cardiac magnetic resonance (CMR)-based analyses would provide accurate characterization and mechanistic insights into different HF groups comprising preserved (HFpEF), mid-range (HFmrEF) and reduced ejection fraction (HFrEF). 22 HFpEF, 17 HFmrEF and 15 HFrEF patients as well as 19 healthy volunteers were included. CMR image assessment contained left atrial (LA) and left ventricular (LV) volumetric evaluation as well as left atrioventricular coupling index (LACI). Furthermore, CMR feature-tracking included LV and LA strain in terms of reservoir (Es), conduit (Ee) and active boosterpump (Ea) function. CMR-based tissue characterization comprised T1 mapping as well as late-gadolinium enhancement (LGE) analyses. HFpEF patients showed predominant atrial impairment (Es 20.8%vs.25.4%, p = 0.02 and Ee 8.3%vs.13.5%, p = 0.001) and increased LACI compared to healthy controls (14.5%vs.23.3%, p = 0.004). Patients with HFmrEF showed LV enlargement but mostly preserved LA function with a compensatory increase in LA boosterpump (LA Ea: 15.0%, p = 0.049). In HFrEF LA and LV functional impairment was documented (Es: 14.2%, Ee: 5.4% p < 0.001 respectively; Ea: 8.8%, p = 0.02). This was paralleled by non-invasively assessed progressive fibrosis (T1 mapping and LGE; HFrEF > HFmrEF > HFpEF). CMR-imaging reveals insights into HF phenotypes with mainly atrial affection in HFpEF, ventricular affection with atrial compensation in HFmrEF and global impairment in HFrEF paralleled by progressive LV fibrosis. These data suggest a necessity for a personalized HF management based on imaging findings for future optimized patient management.


Assuntos
Função do Átrio Esquerdo , Insuficiência Cardíaca , Imagem Cinética por Ressonância Magnética , Fenótipo , Valor Preditivo dos Testes , Volume Sistólico , Função Ventricular Esquerda , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos de Casos e Controles , Fibrose , Remodelação Ventricular , Adulto , Reprodutibilidade dos Testes , Remodelamento Atrial , Meios de Contraste/administração & dosagem
5.
Int J Cardiovasc Imaging ; 40(4): 853-862, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38236362

RESUMO

This methodological study aimed to validate the cardiac output (CO) measured by exercise-stress real-time phase-contrast cardiovascular magnetic resonance imaging (CMR) in patients with heart failure and preserved ejection fraction (HFpEF). 68 patients with dyspnea on exertion (NYHA ≥ II) and echocardiographic signs of diastolic dysfunction underwent rest and exercise stress right heart catheterization (RHC) and CMR within 24 h. Patients were diagnosed as overt HFpEF (pulmonary capillary wedge pressure (PCWP) ≥ 15mmHg at rest), masked HFpEF (PCWP ≥ 25mmHg during exercise stress but < 15mmHg at rest) and non-cardiac dyspnea. CO was calculated using RHC as the reference standard, and in CMR by the volumetric stroke volume, conventional phase-contrast and rest and stress real-time phase-contrast imaging. At rest, the CMR based CO showed good agreement with RHC with an ICC of 0.772 for conventional phase-contrast, and 0.872 for real-time phase-contrast measurements. During exercise stress, the agreement of real-time CMR and RHC was good with an ICC of 0.805. Real-time measurements underestimated the CO at rest (Bias:0.71 L/min) and during exercise stress (Bias:1.4 L/min). Patients with overt HFpEF had a significantly lower cardiac index compared to patients with masked HFpEF and with non-cardiac dyspnea during exercise stress, but not at rest. Real-time phase-contrast CO can be assessed with good agreement with the invasive reference standard at rest and during exercise stress. While moderate underestimation of the CO needs to be considered with non-invasive testing, the CO using real-time CMR provides useful clinical information and could help to avoid unnecessary invasive procedures in HFpEF patients.


Assuntos
Débito Cardíaco , Teste de Esforço , Insuficiência Cardíaca , Valor Preditivo dos Testes , Volume Sistólico , Função Ventricular Esquerda , Humanos , Feminino , Masculino , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Idoso , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Cateterismo Cardíaco , Imagem Cinética por Ressonância Magnética , Fatores de Tempo , Dispneia/fisiopatologia , Dispneia/etiologia , Dispneia/diagnóstico por imagem , Função Ventricular Direita
6.
Sci Rep ; 14(1): 634, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182625

RESUMO

Cardiovascular magnetic resonance (CMR)-derived hemodynamic force (HDF) analyses have been introduced recently enabling more in-depth cardiac function evaluation. Inter-study reproducibility is important for a widespread clinical use but has not been quantified for this novel CMR post-processing tool yet. Serial CMR imaging was performed in 11 healthy participants in a median interval of 63 days (range 49-87). HDF assessment included left ventricular (LV) longitudinal, systolic peak and impulse, systolic/diastolic transition, diastolic deceleration as well as atrial thrust acceleration forces. Inter-study reproducibility and study sample sizes required to demonstrate 10%, 15% or 20% relative changes of HDF measurements were calculated. In addition, intra- and inter-observer analyses were performed. Intra- and inter-observer reproducibility was excellent for all HDF parameters according to intraclass correlation coefficient (ICC) values (> 0.80 for all). Inter-study reproducibility of all HDF parameters was excellent (ICC ≥ 0.80 for all) with systolic parameters showing lower coeffients of variation (CoV) than diastolic measurements (CoV 15.2% for systolic impulse vs. CoV 30.9% for atrial thrust). Calculated sample sizes to detect relative changes ranged from n = 12 for the detection of a 20% relative change in systolic impulse to n = 200 for the detection of 10% relative change in atrial thrust. Overall inter-study reproducibility of CMR-derived HDF assessments was sufficient with systolic HDF measurements showing lower inter-study variation than diastolic HDF analyses.


Assuntos
Hemodinâmica , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Átrios do Coração , Espectroscopia de Ressonância Magnética
7.
Clin Res Cardiol ; 113(3): 496-508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38170248

RESUMO

BACKGROUND: The diagnosis of heart failure with preserved ejection fraction (HFpEF) remains challenging. Recently, the HFpEF Stress Trial demonstrated feasibility and accuracy of non-invasive cardiovascular magnetic resonance (CMR) real-time (RT) exercise-stress atrial function imaging for early identification of HFpEF. However, no outcome data have yet been presented. METHODS: The HFpEF Stress Trial (DZHK-17) prospectively recruited 75 patients with dyspnea on exertion and echocardiographic preserved EF and signs of diastolic dysfunction (E/e' > 8). 68 patients entered the final study cohort and were characterized as HFpEF (n = 34) or non-cardiac dyspnea (n = 34) according to pulmonary capillary wedge pressure (HFpEF: PCWP rest: ≥ 15 mmHg stress: ≥ 25 mmHg). These patients were contacted by telephone and hospital charts were reviewed. The clinical endpoint was cardiovascular events (CVE). RESULTS: Follow-up was performed after 48 months; 1 patient was lost to follow-up. HFpEF patients were more frequently compared to non-cardiac dyspnea (15 vs. 8, p = 0.059). Hospitalised patients during follow-up had higher H2FPEF scores (5 vs. 3, p < 0.001), and impaired left atrial (LA) function at rest (p ≤ 0.002) and stress (p ≤ 0.006). Impairment of CMR-derived atrial function parameters at rest and during exercise-stress (p ≤ 0.003) was associated with increased likelihood for CVE. CMR-Feature Tracking LA Es/Ee (p = 0.016/0.017) and RT-CMR derived LA long axis strain (p = 0.003) were predictors of CVE independent of the presence of atrial fibrillation. CONCLUSIONS: Left atrial function emerged as the strongest predictor for 4-year outcome in the HFpEF Stress Trial. A combination of rest and exercise-stress LA function quantification allows accurate diagnostic and prognostic stratification in HFpEF. CLINICALTRIALS: gov: NCT03260621.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Volume Sistólico , Função Ventricular Esquerda , Imageamento por Ressonância Magnética , Dispneia
8.
ESC Heart Fail ; 11(4): 2013-2022, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38480481

RESUMO

AIMS: This study aimed to identify the impact of increased epicardial adipose tissue (EAT) and its regional distribution on cardiac function in patients with diastolic dysfunction. METHODS AND RESULTS: Sixty-eight patients with exertional dyspnoea (New York Heart Association ≥II), preserved ejection fraction (≥50%), and diastolic dysfunction (E/e' ≥ 8) underwent rest and stress right heart catheterization, transthoracic echocardiography, and cardiovascular magnetic resonance (CMR). EAT volumes were depicted from CMR short-axis stacks. First, the impact of increased EAT above the median was investigated. Second, the association of ventricular and atrial EAT with myocardial deformation at rest and during exercise stress was analysed in a multivariable regression analysis. Patients with high EAT had higher HFA-PEFF and H2FPEFF scores as well as N-terminal prohormone of brain natriuretic peptide levels (all P < 0.048). They were diagnosed with manifest heart failure with preserved ejection fraction (HFpEF) more frequently (low EAT: 37% vs. high EAT: 64%; P = 0.029) and had signs of adverse remodelling indicated by higher T1 times (P < 0.001). No differences in biventricular volumetry and left ventricular mass (all P > 0.074) were observed. Patients with high EAT had impaired atrial strain at rest and during exercise stress, and impaired ventricular strain during exercise stress. Regionally increased EAT was independently associated with functional impairment of the adjacent chambers. CONCLUSIONS: Patients with diastolic dysfunction and increased EAT show more pronounced signs of diastolic functional failure and adverse structural remodelling. Despite similar morphological characteristics, patients with high EAT show significant cardiac functional impairment, in particular in the atria. Our results indicate that regionally increased EAT directly induces atrial functional failure, which represents a distinct pathophysiological feature in HFpEF.


Assuntos
Tecido Adiposo , Diástole , Imagem Cinética por Ressonância Magnética , Pericárdio , Volume Sistólico , Humanos , Masculino , Feminino , Pericárdio/diagnóstico por imagem , Pericárdio/fisiopatologia , Tecido Adiposo/fisiopatologia , Tecido Adiposo/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Volume Sistólico/fisiologia , Pessoa de Meia-Idade , Idoso , Função Ventricular Esquerda/fisiologia , Ecocardiografia , Insuficiência Cardíaca Diastólica/fisiopatologia , Insuficiência Cardíaca Diastólica/diagnóstico , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Seguimentos , Cateterismo Cardíaco , Tecido Adiposo Epicárdico
9.
Sci Rep ; 14(1): 8951, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637609

RESUMO

This study aims at identifying risk-related patterns of left ventricular contraction dynamics via novel volume transient characterization. A multicenter cohort of AMI survivors (n = 1021) who underwent Cardiac Magnetic Resonance (CMR) after infarction was considered for the study. The clinical endpoint was the 12-month rate of major adverse cardiac events (MACE, n = 73), consisting of all-cause death, reinfarction, and new congestive heart failure. Cardiac function was characterized from CMR in 3 potential directions: by (1) volume temporal transients (i.e. contraction dynamics); (2) feature tracking strain analysis (i.e. bulk tissue peak contraction); and (3) 3D shape analysis (i.e. 3D contraction morphology). A fully automated pipeline was developed to extract conventional and novel artificial-intelligence-derived metrics of cardiac contraction, and their relationship with MACE was investigated. Any of the 3 proposed directions demonstrated its additional prognostic value on top of established CMR indexes, myocardial injury markers, basic characteristics, and cardiovascular risk factors (P < 0.001). The combination of these 3 directions of enhancement towards a final CMR risk model improved MACE prediction by 13% compared to clinical baseline (0.774 (0.771-0.777) vs. 0.683 (0.681-0.685) cross-validated AUC, P < 0.001). The study evidences the contribution of the novel contraction characterization, enabled by a fully automated pipeline, to post-infarction assessment.


Assuntos
Infarto do Miocárdio com Supradesnível do Segmento ST , Função Ventricular Esquerda , Humanos , Volume Sistólico , Fatores de Risco , Medição de Risco , Prognóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Valor Preditivo dos Testes , Imagem Cinética por Ressonância Magnética
10.
Clin Res Cardiol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324040

RESUMO

BACKGROUND: Accurate risk stratification is important to improve patient selection and outcome of patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR). As epicardial adipose tissue (EAT) is discussed to be involved in cardiovascular disease, it could be useful as a marker of poor prognosis in patients with severe AS undergoing TAVR. METHODS: A total of 416 patients diagnosed with severe AS by transthoracic echocardiography were assigned for TAVR and enrolled for systematic assessment. Patients underwent clinical surveys and 5-year long-term follow-up, with all-cause mortality as the primary endpoint. EAT volume was quantified on pre-TAVR planning CTs. Patients were retrospectively dichotomized at the median of 74 cm3 of EAT into groups with low EAT and high EAT volumes. Mortality rates were compared using Kaplan-Meyer plots and uni- and multivariable cox regression analyses. RESULTS: A total number of 341 of 416 patients (median age 80.9 years, 45% female) were included in the final analysis. Patients with high EAT volumes had similar short-term outcome (p = 0.794) but significantly worse long-term prognosis (p = 0.023) compared to patients with low EAT volumes. Increased EAT volumes were associated with worse long-term outcome (HR1.59; p = 0.031) independently from concomitant cardiovascular risk factors, general type of AS, and functional echocardiography parameters of AS severity (HR1.69; p = 0.013). CONCLUSION: Increased EAT volume is an independent predictor of all-cause mortality in patients with severe AS undergoing TAVR. It can be easily obtained from pre-TAVR planning CTs and may thus qualify as a novel marker to improve prognostication and management of patient with severe AS. TRIAL REGISTRATION: DRKS, DRKS00024479.

11.
Radiol Cardiothorac Imaging ; 6(4): e230344, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39145733

RESUMO

Purpose To investigate if aortic stiffening as detected with cardiac MRI is an early phenomenon in the development and progression of heart failure with preserved ejection fraction (HFpEF). Materials and Methods Both clinical and preclinical studies were performed. The clinical study was a secondary analysis of the prospective HFpEF stress trial (August 2017 through September 2019) and included 48 participants (median age, 69 years [range, 65-73 years]; 33 female, 15 male) with noncardiac dyspnea (NCD, n = 21), overt HFpEF at rest (pulmonary capillary wedge pressure [PCWP] ≥ 15 mm Hg, n = 14), and masked HFpEF at rest diagnosed during exercise stress (PCWP ≥ 25 mm Hg, n = 13) according to right heart catheterization. Additionally, all participants underwent echocardiography and cardiac MRI at rest and during exercise stress. Aortic pulse wave velocity (PWV) was calculated. The mechanistic preclinical study characterized cardiac function and structure in transgenic mice with induced arterial stiffness (Runx2-smTg mice). Statistical analyses comprised nonparametric and parametric comparisons, Spearman correlations, and logistic regression models. Results Participants with HFpEF showed increased PWV (NCD vs masked HFpEF: 7.0 m/sec [IQR: 5.0-9.5 m/sec] vs 10.0 m/sec [IQR: 8.0-13.4 m/sec], P = .005; NCD vs overt HFpEF: 7.0 m/sec [IQR: 5.0-9.5 m/sec] vs 11.0 m/sec [IQR: 7.5-12.0 m/sec], P = .01). Increased PWV correlated with higher PCWP (P = .006), left atrial and left ventricular long-axis strain (all P < .02), and N-terminal pro-brain natriuretic peptide levels (P < .001). Participants with overt HFpEF had higher levels of myocardial fibrosis, as demonstrated by increased native T1 times (1199 msec [IQR: 1169-1228 msec] vs 1234 msec [IQR: 1208-1255 msec], P = .009). Aortic stiffness was independently associated with HFpEF on multivariable analyses (odds ratio, 1.31; P = .049). Runx2-smTG mice exhibited an "HFpEF" phenotype compared with wild-type controls, with preserved left ventricular fractional shortening but an early and late diastolic mitral annulus velocity less than 1 (mean, 0.67 ± 0.39 [standard error of the mean] vs 1.45 ± 0.47; P = .004), increased myocardial collagen deposition (mean, 11% ± 1 vs 2% ± 1; P < .001), and increased brain natriuretic peptide levels (mean, 171 pg/mL ± 23 vs 101 pg/mL ± 10; P < .001). Conclusion This study provides translational evidence that increased arterial stiffness might be associated with development and progression of HFpEF and may facilitate its early detection. Keywords: MR Functional Imaging, MR Imaging, Animal Studies, Cardiac, Aorta, Heart ClinicalTrials.gov identifier NCT03260621 Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Progressão da Doença , Insuficiência Cardíaca , Volume Sistólico , Rigidez Vascular , Humanos , Rigidez Vascular/fisiologia , Feminino , Masculino , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Idoso , Volume Sistólico/fisiologia , Animais , Camundongos , Estudos Prospectivos , Imagem Cinética por Ressonância Magnética/métodos , Ecocardiografia , Imageamento por Ressonância Magnética , Análise de Onda de Pulso
12.
JACC Adv ; 2(4): 100327, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38938247

RESUMO

Background: Heart failure with preserved ejection fraction (HFpEF) has been observed to have a twice as high prevalence in women compared to men with similar predisposing risk factors between both sexes. Objectives: This study aimed to identify sex-specific pathophysiological features in HFpEF using rest and exercise stress right heart catheterization (RHC), echocardiography and cardiovascular magnetic resonance imaging (CMR). Methods: Seventy-five patients with exertional dyspnea, preserved ejection fraction (EF) (≥50%), and signs of diastolic dysfunction on echocardiography were prospectively recruited in the HFpEF Stress Trial. Patients underwent RHC, echocardiography and CMR at rest and during exercise stress. Patients were diagnosed with HFpEF and noncardiac dyspnea according to RHC measurements. Results: After exclusion, the final study cohort comprised 68 patients (females n = 44, males n = 24) with a mean age of 66.9 ± 9.7 years. Compared to men, women with HFpEF revealed lower right ventricular stroke volumes during exercise stress (females 38.1 vs males 50.4 mL/m2 BSA; P = 0.011). This was accompanied by a decreasing left atrial EF in women but not men comparing resting to exercise conditions (females -2.7% vs males 2.5%, P = 0.020) and impaired left ventricular filling (females 35.5 vs males 44.2 mL/m2 BSA, P = 0.017) in women with HFpEF during exercise stress. These sex-specific differences were not present in noncardiac dyspnea. Conclusions: Women with HFpEF demonstrate sex-specific functional alterations of right ventricular, left atrial, and left ventricular function during exercise stress. This unique pathophysiology represents a sex-specific diagnostic target, which may allow early identification of women with HFpEF for future individualized therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA