Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(22): eabo0200, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35648862

RESUMO

Dynamic soaring harvests energy from a spatiotemporal wind gradient, allowing albatrosses to glide over vast distances. However, its use is challenging to demonstrate empirically and has yet to be confirmed in other seabirds. Here, we investigate how flap-gliding Manx shearwaters optimize their flight for dynamic soaring. We do so by deriving a new metric, the horizontal wind effectiveness, that quantifies how effectively flight harvests energy from a shear layer. We evaluate this metric empirically for fine-scale trajectories reconstructed from bird-borne video data using a simplified flight dynamics model. We find that the birds' undulations are phased with their horizontal turning to optimize energy harvesting. We also assess the opportunity for energy harvesting in long-range, GPS-logged foraging trajectories and find that Manx shearwaters optimize their flight to increase the opportunity for dynamic soaring during favorable wind conditions. Our results show how small-scale dynamic soaring affects large-scale Manx shearwater distribution at sea.

2.
Sci Rep ; 10(1): 15056, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929167

RESUMO

Biologging has emerged as one of the most powerful and widely used technologies in ethology and ecology, providing unprecedented insight into animal behaviour. However, attaching loggers to animals may alter their behaviour, leading to the collection of data that fails to represent natural activity accurately. This is of particular concern in free-ranging animals, where tagged individuals can rarely be monitored directly. One of the most commonly reported measures of impact is breeding success, but this ignores potential short-term alterations to individual behaviour. When collecting ecological or behavioural data, such changes can have important consequences for the inference of results. Here, we take a multifaceted approach to investigate whether tagging leads to short-term behavioural changes, and whether these are later reflected in breeding performance, in a pelagic seabird. We analyse a long-term dataset of tracking data from Manx shearwaters (Puffinus puffinus), comparing the effects of carrying no device, small geolocator (GLS) devices (0.6% body mass), large Global Positioning System (GPS) devices (4.2% body mass) and a combination of the two (4.8% body mass). Despite exhibiting normal breeding success in both the year of tagging and the following year, incubating birds carrying GPS devices altered their foraging behaviour compared to untagged birds. During their foraging trips, GPS-tagged birds doubled their time away from the nest, experienced reduced foraging gains (64% reduction in mass gained per day) and reduced flight time by 14%. These findings demonstrate that the perceived impacts of device deployment depends on the scale over which they are sought: long-term measures, such as breeding success, can obscure finer-scale behavioural change, potentially limiting the validity of using GPS to infer at-sea behaviour when answering behavioural or ecological questions.


Assuntos
Comportamento Animal , Aves/fisiologia , Tecnologia de Sensoriamento Remoto/métodos , Animais , Oceanos e Mares , Tecnologia de Sensoriamento Remoto/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA