Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Data Brief ; 29: 105253, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32099880

RESUMO

The data presented in this article are related to the original research paper entitled "Comparative characterization of eucalyptus fibres and softwood fibres for tissue papers applications" available in Materials Letter: X Journal [1]. In this article, six eucalyptus hardwood pulps and six softwood pulps were characterized in terms of morphological, chemical and water-related (by drainability and water retention index) properties. In addition, using these pulps, unpressed laboratory isotropic handsheets were produced with a basis weight of approximately 20 g/m2, similarly to tissue papers. The key properties of tissue papers, namely structural properties, tensile index, absorption, and handfeel softness were analysed in these handsheets.

2.
Int J Biol Macromol ; 163: 251-259, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32615230

RESUMO

Agrofood byproducts may be exploited as a source of biomolecules suitable for developing bioplastic materials. In this work, the feasibility of using starch, oil, and waxes recovered from potato chips byproducts for films production was studied. The recovered potato starch-rich fraction (RPS) contained an amylopectin/amylose ratio of 2.3, gelatinization temperatures varying from 59 to 71 °C, and a gelatinization enthalpy of 12.5 J/g, similarly to a commercial potato starch (CPS). Despite of its spherical and oval granules identical to CPS, RPS had a more amorphous structure and gave rise to low viscous suspensions, contradicting the typical B-type polymorph crystal structure and sluggish dispersions of CPS, respectively. When used for films production, RPS originated transparent films with lower roughness and wettability than CPS-based films, but with higher stretchability. In turn, when combined with RPS and CPS, oil or waxes recovered from frying residues and potato peels, respectively, allowed to develop transparent yellowish RPS- and CPS-based films with increased surface hydrophobicity, mechanical traction resistance, elasticity, and/or plasticity. Therefore, potato chips industry byproducts revealed to have thermoplastic and hydrophobic biomolecules that can be used to efficiently develop biobased plastics with improved surface properties and flexibility, opening an opportunity for their valorization.


Assuntos
Filmes Comestíveis , Óleos de Plantas/química , Solanum tuberosum/química , Amido/química , Ceras/química , Amilopectina/química , Amilose/química , Fenômenos Químicos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Tamanho da Partícula , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA