Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(31): 16611-16622, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34319320

RESUMO

We present a comprehensive theoretical and experimental Raman spectroscopic comparative study of bulk Phosphorus allotropes (white, black, Hittorf's, fibrous) and their monolayer equivalents, demonstrating that the application of the Placzek approximation to density functional theory calculated frequencies allows reliable and accurate reproduction of the bulk spectra at a relatively low computational cost. As well as accurate frequencies, peak intensities are also reproduced with reasonable accuracy. Having established the viability of the method we apply it to other less well characterised phosphorus forms such as isolated P4 cages and the planar blue-phosphorus phase. There are several speculative structural models in the literature for amorphous red phosphorus, and we predict Raman spectra for several of these. Via comparison with experiment this allows us to eliminate many of them such as the P2P2-zigzag chain and connected P4 models. The combination of Density functional theory (DFT) modelling, Placzek approximation for intensities with experimental Raman spectroscopy is demonstrated as a powerful combination for accurate characterisation of phosphorus species.

2.
Phys Chem Chem Phys ; 18(33): 23257-63, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27498723

RESUMO

Density functional calculations are used to study the role of edge-functionalization on the structure and electronic properties of cycloparaphenylene (CPPs) containing from six to twenty benzenoid rings. We substitute hydrogen by the halogens fluorine, chlorine and bromine. The resultant Cyclotetrahalo-p-phenylenes are compared with their hydrogenated equivalents, related linear paraphenyl and fluoro-paraphenyl polymers, and functionalised armchair edges in graphene nanoribbons. Notably we consider both structural and electronic evolution. Finally we examine C60@[10]CPP, i.e. C60 encapsulated within [10]CPP, with the various ring terminations. The effect of halogenation on electronic level position around the gap strongly affects their capacity to form donor-acceptor pairs with fullerenes.

3.
ACS Nano ; 16(4): 6002-6012, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377145

RESUMO

We identify the "missing" 1D-phosphorus allotrope, red phosphorus chains, formed in the interior of tip-opened single-walled carbon nanotubes (SWCNTs). Via a comprehensive experimental and theoretical study we show that in intermediate diameter cavities (1.6-2.9 nm), phosphorus vapor condenses into linear P8]P2 chains and fibrous red-phosphorus type cross-linked double-chains. Thermogravimetric and X-ray photoelectron spectroscopy analysis estimates ∼7 atom % of elemental phosphorus in the sample, while high-resolution energy dispersive X-ray spectroscopy mapping reveals that phosphorus fills the SWCNTs. High-resolution transmission electron microscopy (HRTEM) shows long chains inside the nanotubes with varying arrangement and packing density. A detailed match is obtained between density functional theory (DFT) simulations, HRTEM, and low-frequency Raman spectroscopy. Notably, a signature spectroscopic signal for phosphorus chain cross-linking is identified. When coupled with reinterpretation of literature data and wide-ranging DFT calculations, these results reveal a comprehensive picture of the diameter dependence of confined 1D-phosphorus allotropes.

4.
Nanotechnology ; 20(37): 375501, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19706940

RESUMO

Carbon nanotube surfaces, activated and randomly decorated with metal nanoclusters, have been studied in uniquely combined theoretical and experimental approaches as prototypes for molecular recognition. The key concept is to shape metallic clusters that donate or accept a fractional charge upon adsorption of a target molecule, and modify the electron transport in the nanotube. The present work focuses on a simple system, carbon nanotubes with gold clusters. The nature of the gold-nanotube interaction is studied using first-principles techniques. The numerical simulations predict the binding and diffusion energies of gold atoms at the tube surface, including realistic atomic models for defects potentially present at the nanotube surface. The atomic structure of the gold nanoclusters and their effect on the intrinsic electronic quantum transport properties of the nanotube are also predicted. Experimentally, multi-wall CNTs are decorated with gold clusters using (1) vacuum evaporation, after activation with an RF oxygen plasma and (2) colloid solution injected into an RF atmospheric plasma; the hybrid systems are accurately characterized using XPS and TEM techniques. The response of gas sensors based on these nano(2)hybrids is quantified for the detection of toxic species like NO(2), CO, C(2)H(5)OH and C(2)H(4).


Assuntos
Gases/análise , Gases/química , Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/ultraestrutura
5.
J Phys Condens Matter ; 29(15): 155304, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28181915

RESUMO

AA-stacked graphite and closely related structures, where carbon atoms are located in registry in adjacent graphene layers, are a feature of graphitic systems including twisted and folded bilayer graphene, and turbostratic graphite. We present the results of ab initio density functional theory calculations performed to investigate the complexes that are formed from the binding of vacancy defects across neighbouring layers in AA-stacked bilayers. As with AB stacking, the carbon atoms surrounding lattice vacancies can form interlayer structures with sp 2 bonding that are lower in energy than in-plane reconstructions. The sp 2 interlayer bonding of adjacent multivacancy defects in registry creates a type of stable sp 2 bonded 'wormhole' or tunnel defect between the layers. We also identify a new class of 'mezzanine' structure characterised by sp 3 interlayer bonding, resembling a prismatic vacancy loop. The V 6 hexavacancy variant, where six sp 3 carbon atoms sit midway between two carbon layers and bond to both, is substantially more stable than any other vacancy aggregate in AA-stacked layers. Our focus is on vacancy generation and aggregation in the absence of extreme temperatures or intense beams.

6.
J Nanosci Nanotechnol ; 5(9): 1345-63, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16193950

RESUMO

Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.


Assuntos
Cristalização/métodos , Eletroquímica/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Nitrogênio/química , Semicondutores , Condutividade Elétrica , Eletroquímica/instrumentação , Teste de Materiais , Nanotubos de Carbono/análise , Tamanho da Partícula , Propriedades de Superfície
7.
Faraday Discuss ; 173: 215-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25468305

RESUMO

We explore the behaviour of nitrogen doping in carbon nanomaterials, notably graphene, nanotubes, and carbon thin films. This is initially via a brief review of the literature, followed by a series of atomistic density functional calculations. We show that at low concentrations, substitutional nitrogen doping in the sp(2)-C graphenic basal plane is favoured, however once the nitrogen concentration reaches a critical threshold there is a transition towards the formation of the more thermodynamically-favoured nitrogen terminated 'zigzag' type edges. These can occur either via formation of finite patches (polycyclic aromatic azacarbons), strips of sp(2) carbon with zigzag nitrogen edges, or internal nitrogen-terminated hole edges within graphenic planes. This transition to edge formation is especially favoured when the nitrogen can be partially functionalised with, e.g. hydrogen. By comparison with available literature results, notably from electron energy loss spectroscopy and X-ray spectroscopy, the current results suggest that much of the nitrogen believed to be incorporated into carbon nanoobjects is instead likely to be present terminating the edges of carbonaceous impurities attached to nanoobject's surface. By comparison to nitrogen-doped tetrahedrally amorphous carbon, we suggest that this transition at around 10-20% nitrogen concentration and above towards sp(2) coordination via internal nitrogen-terminated edge formation may be a general property of nitrogen-doped carbon materials.

8.
Nano Lett ; 6(9): 1955-60, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16968007

RESUMO

A combination of electron microscopy and theoretical calculations provides new insights into the structure, electronics, and energetics of point defects and vacancy lines in BN single-wall nanotubes (SWNT). We show that the point defects forming under electron irradiation in the BN SWNTs are primarily divacancies. Due to the partially ionic character of the BN bonding, divacancies behave like an associated Schottky pair, with a dissociation energy of around 8 eV. Clustering of multiple vacancies is energetically favorable and leads to extended defects which locally change the nanotube diameter and chirality. Nevertheless these defects do not alter significantly the band gap energy, and all of them have electronic structure similar to that of BN divacancies. We thus conclude that under irradiation BN SWNT may have a very stable alteration of its electronic and optical properties.


Assuntos
Compostos de Boro/química , Modelos Químicos , Modelos Moleculares , Nanotubos/química , Nanotubos/ultraestrutura , Semicondutores , Compostos de Boro/análise , Simulação por Computador , Condutividade Elétrica , Teste de Materiais , Nanotubos/análise , Tamanho da Partícula , Propriedades de Superfície
9.
Phys Rev Lett ; 91(2): 025505, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12906489

RESUMO

The atomic processes associated with energy storage and release in irradiated graphite have long been subject to untested speculation. We examine structures and recombination routes for interstitial-vacancy (I-V) pairs in graphite. Interaction results in the formation of a new metastable defect (an intimate I-V pair) or a Stone-Wales defect. The intimate I-V pair, although 2.9 eV more stable than its isolated constituents, still has a formation energy of 10.8 eV. The barrier to recombination to perfect graphite is calculated to be 1.3 eV, consistent with the experimental first Wigner energy release peak at 1.38 eV. We expect similar defects to form in carbon nanostructures such as nanotubes, nested fullerenes, and onions under irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA