Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 26(29): 6686-6693, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32203623

RESUMO

Density functional studies of the edges of single-layer 1H-MoS2 are presented. This phase presents a rich variability of edges that can influence the morphology and properties of MoS2 nano-objects, play an important role in industrial chemical processes, and find future applications in energy storage, electronics and spintronics. The so-called Mo-100 %S edges vertical S-dimers were confirmed to be stable, however the authors also identified a family of metastable edges combining Mo atoms linked by two-electron donor symmetrical disulfide ligands and four-electron donor unsymmetrical disulfide ligands. These may be entropically favored, potentially stabilizing them at high temperatures as a "liquid edge" phase. For Mo-50 %S edges, S-bridge structures with 3× periodicity along the edge are the most stable, compatible with a Peierls' distortion arising from the d-bands of the edge Mo atoms. An additional explanation for this periodicity is proposed through the formation of 3-center bonds.

2.
Angew Chem Int Ed Engl ; 58(49): 17745-17750, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31557367

RESUMO

A major handicap towards the exploitation of radicals is their inherent instability. In the paramagnetic azafullerenyl radical C59 N. , the unpaired electron is strongly localized next to the nitrogen atom, which induces dimerization to diamagnetic bis(azafullerene), (C59 N)2 . Conventional stabilization by introducing steric hindrance around the radical is inapplicable here because of the concave fullerene geometry. Instead, we developed an innovative radical shielding approach based on supramolecular complexation, exploiting the protection offered by a [10]cycloparaphenylene ([10]CPP) nanobelt encircling the C59 N. radical. Photoinduced radical generation is increased by a factor of 300. The EPR signal showing characteristic 14 N hyperfine splitting of C59 N. ⊂ [10]CPP was traced even after several weeks, which corresponds to a lifetime increase of >108 . The proposed approach can be generalized by tuning the diameter of the employed nanobelts, opening new avenues for the design and exploitation of radical fullerenes.

3.
Chem Rev ; 116(8): 4850-83, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27074223

RESUMO

Carbon nanohorns (sometimes also known as nanocones) are conical carbon nanostructures constructed from an sp(2) carbon sheet. Nanohorns require no metal catalyst in their synthesis, and can be produced in industrial quantities. They provide a realistic and useful alternative to carbon nanotubes, and possibly graphene, in a wide range of applications. They also have their own unique behavior due to their specific conical morphology. However, their research and development has been slowed by several factors, notably during synthesis, they aggregate into spherical clusters ∼100 nm in diameter, blocking functionalization and treatment of individual nanocones. This limitation has recently been overcome with a new approach to separating these "dahlia-like" clusters into individual nanocones. In this review, we describe the structure, synthesis, and topology of carbon nanohorns, and provide a detailed review of nanohorn chemistry.


Assuntos
Técnicas Biossensoriais/métodos , Portadores de Fármacos/síntese química , Grafite/química , Nanoestruturas/química , Catálise , Complexos de Coordenação/química , Reação de Cicloadição , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Pirrolidinas/química , Semicondutores , Ácidos Siálicos/química , Coloração e Rotulagem/métodos , Terminologia como Assunto
4.
Proc Natl Acad Sci U S A ; 112(51): 15609-12, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644554

RESUMO

In recent years, a plethora of theoretical carbon allotropes have been proposed, none of which has been experimentally isolated. We discuss here criteria that should be met for a new phase to be potentially experimentally viable. We take as examples Haeckelites, 2D networks of sp(2)-carbon-containing pentagons and heptagons, and "penta-graphene," consisting of a layer of pentagons constructed from a mixture of sp(2)- and sp(3)-coordinated carbon atoms. In 2D projection appearing as the "Cairo pattern," penta-graphene is elegant and aesthetically pleasing. However, we dispute the author's claims of its potential stability and experimental relevance.

5.
Proc Natl Acad Sci U S A ; 110(45): 18081-6, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145444

RESUMO

Carbonaceous presolar grains of supernovae origin have long been isolated and are determined to be the carrier of anomalous (22)Ne in ancient meteorites. That exotic (22)Ne is, in fact, the decay isotope of relatively short-lived (22)Na formed by explosive nucleosynthesis, and therefore, a selective and rapid Na physical trapping mechanism must take place during carbon condensation in supernova ejecta. Elucidation of the processes that trap Na and produce large carbon molecules should yield insight into carbon stardust enrichment and formation. Herein, we demonstrate that Na effectively nucleates formation of Na@C60 and other metallofullerenes during carbon condensation under highly energetic conditions in oxygen- and hydrogen-rich environments. Thus, fundamental carbon chemistry that leads to trapping of Na is revealed, and should be directly applicable to gas-phase chemistry involving stellar environments, such as supernova ejecta. The results indicate that, in addition to empty fullerenes, metallofullerenes should be constituents of stellar/circumstellar and interstellar space. In addition, gas-phase reactions of fullerenes with polycyclic aromatic hydrocarbons are investigated to probe "build-up" and formation of carbon stardust, and provide insight into fullerene astrochemistry.


Assuntos
Carbono/química , Fulerenos/química , Modelos Químicos , Compostos Organometálicos/química , Astros Celestes/química , Análise de Fourier , Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/química
6.
Angew Chem Int Ed Engl ; 55(35): 10468-72, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27444516

RESUMO

A facile approach to individualize spherically aggregated pristine carbon nanohorns (pr-CNHs) was established. Specifically, we found that treatment of pr-CNHs with chlorosulfonic acid generates positively charged polarized species, which disintegrate toward individualized carbon nanohorns (in-CNHs). Interestingly, the isolated in-CNHs were revealed to be p-doped owing to the adsorption of chlorosulfonate units. The findings were confirmed by data derived from high-resolution transmission electron microscopy imaging, Raman and ultraviolet photoemission spectroscopy, and additionally supported by theoretical calculations and thermogravimetry.

7.
ACS Nano ; 17(24): 25301-25310, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085812

RESUMO

We deposit azafullerene C59N• radicals in a vacuum on the Au(111) surface for layer thicknesses between 0.35 and 2.1 monolayers (ML). The layers are characterized using X-ray photoemission (XPS) and X-ray absorption fine structure (NEXAFS) spectroscopy, low-temperature scanning tunneling microscopy (STM), and by density functional calculations (DFT). The singly unoccupied C59N orbital (SUMO) has been identified in the N 1s NEXAFS/XPS spectra of C59N layers as a spectroscopic fingerprint of the molecular radical state. At low molecular coverages (up to 1 ML), films of monomeric C59N are stabilized with the nonbonded carbon orbital neighboring the nitrogen oriented toward the Au substrate, whereas in-plane intermolecular coupling into diamagnetic (C59N)2 dimers takes over toward the completion of the second layer. By following the C59N• SUMO peak intensity with increasing molecular coverage, we identify an intermediate high-spin-density phase between 1 and 2 ML, where uncoupled C59N• monomers in the second layer with pronounced radical character are formed. We argue that the C59N• radical stabilization of this supramonolayer phase of monomers is achieved by suppressed coupling to the substrate. This results from molecular isolation on top of the passivating azafullerene contact layer, which can be explored for molecular radical state stabilization and positioning on solid substrates.

8.
Nat Commun ; 13(1): 6872, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369509

RESUMO

Explosive percolation is an experimentally-elusive phenomenon where network connectivity coincides with onset of an additional modification of the system; materials with correlated localisation of percolating particles and emergent conductive paths can realise sharp transitions and high conductivities characteristic of the explosively-grown network. Nanocomposites present a structurally- and chemically-varied playground to realise explosive percolation in practically-applicable systems but this is yet to be exploited by design. Herein, we demonstrate composites of graphene oxide and synthetic polymer latex which form segregated networks, leading to low percolation threshold and localisation of conductive pathways. In situ reduction of the graphene oxide at temperatures of <150 °C drives chemical modification of the polymer matrix to produce species with phenolic groups, which are known crosslinking agents. This leads to conductivities exceeding those of dense-packed networks of reduced graphene oxide, illustrating the potential of explosive percolation by design to realise low-loading composites with dramatically-enhanced electrical transport properties.

9.
J Am Chem Soc ; 133(42): 16938-46, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21923167

RESUMO

We present a systematic Raman study over a range of excitation energies of arc discharge single-walled carbon nanotubes (SWCNTs) covalently functionalized according to two processes, esterification and reductive alkylation. The SWCNTs are characterized by resonance Raman spectroscopy at each step of the functionalization process, showing changes in radial breathing mode frequencies and transition energies for both semiconducting and metallic tubes. Particular attention is given to a family of tubes clearly identified in the Kataura plot for which we continuously tune the excitation energy from 704 to 752 nm. This allows us to quantify the energy shift occurring in the spacing of the van Hove singularities. We demonstrate that, independently of the functionalization technique, the type of chain covalently bound to the tubes plays an important role, notably when oxygen atoms lie close to the tubes, inducing a larger shift in transition energy as compared to that of other carbonaceous chains. The study shows the complexity of interpreting Raman data and suggests many interpretations in the literature may need to be revisited.

10.
Nanoscale ; 13(47): 19946-19955, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34821238

RESUMO

Molecular entities with robust spin-1/2 are natural two-level quantum systems for realizing qubits and are key ingredients of emerging quantum technologies such as quantum computing. Here we show that robust and abundant spin-1/2 species can be created in situ in the solid state from spin-active azafullerene C59N cages supramolecularly hosted in crystals of [10]cycloparaphenylene ([10]CPP) nanohoops. This is achieved via a two-stage thermally-assisted homolysis of the parent diamagnetic [10]CPP⊃(C59N)2⊂[10]CPP supramolecular complex. Upon cooling, the otherwise unstable C59N˙ radical is remarkably persistent with a measured radical lifetime of several years. Additionally, pulsed electron paramagnetic resonance measurements show long coherence times, fulfilling a basic condition for any qubit manipulation, and observed Rabi oscillations demonstrate single qubit operation. These findings together with rapid recent advances on the synthesis of carbon nanohoops offer the potential to fabricate tailored cycloparaphenylene networks hosting C59N˙ centers, providing a promising platform for building complex qubit circuits.

11.
ACS Nano ; 15(1): 596-603, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33444504

RESUMO

Above a critical diameter, single- or few-walled carbon nanotubes spontaneously collapse as flattened carbon nanotubes. Raman spectra of isolated flattened and cylindrical carbon nanotubes have been recorded. The collapse provokes an intense and narrow D band, despite the absence of any lattice disorder. The curvature change near the edge cavities activates a D band, despite framework continuity. Theoretical calculations based on Placzek approximation fully corroborate this experimental finding. Usually used as a tool to quantify defect density in graphenic structures, the D band cannot be used as such in the presence of a graphene fold. This conclusion should serve as a basis to revisit materials comprising structural distortion where poor carbon organization was concluded on a Raman basis. Our finding also emphasizes the different visions of a defect between chemists and physicists, a possible source of confusion for researchers working in nanotechnologies.

12.
Nanomaterials (Basel) ; 10(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093023

RESUMO

Environmental degradation of transition metal disulfides (TMDs) is a key stumbling block in a range of applications. We show that a simple one-pot non-covalent pyrene coating process protects TMDs from both photoinduced oxidation and environmental aging. Pyrene is immobilized non-covalently on the basal plane of exfoliated MoS2 and WS2. The optical properties of TMD/pyrene are assessed via electronic absorption and fluorescence emission spectroscopy. High-resolution scanning transmission electron microscopy coupled with electron energy loss spectroscopy confirms extensive pyrene surface coverage, with density functional theory calculations suggesting a strongly bound stable parallel-stacked pyrene coverage of ~2-3 layers on the TMD surfaces. Raman spectroscopy of exfoliated TMDs while irradiating at 0.9 mW/4 µm2 under ambient conditions shows new and strong Raman bands due to oxidized states of Mo and W. Yet remarkably, under the same exposure conditions TMD/pyrene remain unperturbed. The current findings demonstrate that pyrene physisorbed on MoS2 and WS2 acts as an environmental barrier, preventing oxidative surface reactions in the TMDs catalyzed by moisture, air, and assisted by laser irradiation. Raman spectroscopy confirms that the hybrid materials stored under ambient conditions for two years remained structurally unaltered, corroborating the beneficial role of pyrene for not only hindering oxidation but also inhibiting aging.

13.
Sci Adv ; 6(24): eaba4942, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32577521

RESUMO

The structural transformations of graphene defects have been extensively researched through aberration-corrected transmission electron microscopy (AC-TEM) and theoretical calculations. For a long time, a core concept in understanding the structural evolution of graphene defects has been the Stone-Thrower-Wales (STW)-type bond rotation. In this study, we show that undercoordinated atoms induce bond formation and breaking, with much lower energy barriers than the STW-type bond rotation. We refer to them as mediator atoms due to their mediating role in the breaking and forming of bonds. Here, we report the direct observation of mediator atoms in graphene defect structures using AC-TEM and annular dark-field scanning TEM (ADF-STEM) and explain their catalytic role by tight-binding molecular dynamics (TBMD) simulations and image simulations based on density functional theory (DFT) calculations. The study of mediator atoms will pave a new way for understanding not only defect transformation but also the growth mechanisms in two-dimensional materials.

14.
ACS Appl Mater Interfaces ; 12(35): 39541-39548, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32697564

RESUMO

Laser-deposited carbon aerogel is a low-density porous network of carbon clusters synthesized using a laser process. A one-step synthesis, involving deposition and annealing, results in the formation of a thin porous conductive film which can be applied as a chemiresistor. This material is sensitive to NO2 compared to ammonia and other volatile organic compounds and is able to detect ultra-low concentrations down to at least 10 parts-per-billion. The sensing mechanism, based on the solubility of NO2 in the water layer adsorbed on the aerogel, increases the usability of the sensor in practically relevant ambient environments. A heating step, achieved in tandem with a microheater, allows the recovery to the baseline, making it operable in real world environments. This, in combination with its low cost and scalable production, makes it promising for Internet-of-Things air quality monitoring.

15.
Chemphyschem ; 10(6): 920-5, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19266519

RESUMO

Finely tuned: Carbon nanotubes are exposed to a CF(4) radio-frequency plasma (see picture). High-resolution photoelectron spectroscopy shows that the treatment effectively grafts fluorine atoms onto the MWCNTs, altering the valence electronic states. Fluorine surface concentration can be tuned by varying the exposure time.Multi-wall carbon nanotubes (MWCNTs) were exposed to a CF(4) radio-frequency (rf) plasma. High-resolution photoelectron spectroscopy shows that the treatment effectively grafts fluorine atoms onto the MWCNTs, altering the valence electronic states. Fluorine surface concentration can be tuned by varying the exposure time. Evaporation of gold onto MWCNTs is used to mark active site formation. High-resolution transmission electron microscopy coupled with density functional theory (DFT) modelling is used to characterise the surface defects formed, indicating that the plasma treatment does not etch the tube surface. We suggest that this combination of theory and microscopy of thermally evaporated gold atoms onto the CNT surface may be a powerful approach to characterise both surface defect density as well as defect type.


Assuntos
Flúor/química , Nanotubos de Carbono/química , Ouro/química , Microscopia Eletrônica de Transmissão , Espectrometria por Raios X
16.
Chemphyschem ; 10(11): 1799-804, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19472267

RESUMO

We study the interface between carbon nanotubes (CNTs) and surface-deposited titanium using electron microscopy and photoemission spectroscopy, supported by density functional calculations. Charge transfer from the Ti atoms to the nanotube and carbide formation is observed at the interface which indicates strong interaction. Nevertheless, the presence of oxygen between the Ti and the CNTs significantly weakens the Ti-CNT interaction. Ti atoms at the surface will preferentially bond to oxygenated sites. Potential sources of oxygen impurities are examined, namely oxygen from any residual atmosphere and pre-existing oxygen impurities on the nanotube surface, which we enhance through oxygen plasma surface pre-treatment. Variation in literature data concerning Ohmic contacts between Ti and carbon nanotubes is explained via sample pre-treatment and differing vacuum levels, and we suggest improved treatment routes for reliable Schottky barrier-free Ti-nanotube contact formation.

17.
J Nanosci Nanotechnol ; 9(10): 6144-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19908507

RESUMO

The interaction between carbon buckminsterfullerene (C60) and carbon nanohorns (also referred to as nanocones) with different tip angles is investigated theoretically. Attachment of C60 to both the interior and the exterior of the horns are considered. Calculations cover a range of cone angles from flat graphene, through 114 degrees, 84 degrees, 60 degrees, 39 degrees and 20 degrees to fullerene pair interaction. Full DFT/LDA calculations are performed and the influence of dispersion forces are considered independently using a numerical potential. Fullerenes bind weakly to the external nanocone wall with approximately 2.9 angstroms spacing (0.5-0.9 eV binding energy), showing no discernable trend with cone tip angle. Fullerene binding inside cones is significantly stronger (> 3 eV), primarily due to strong dispersion force interactions, with higher (approximately 3.1 angstroms) fullerene-nanohorn spacing. In this case, the binding energy increases with number of pentagons in the tip. In all cases the fullerenes will be freely rotating below liquid nitrogen temperatures. For pristine cones and fullerenes, the fullerenes will experience a driving force towards (away) from the nanohorn tip when inside (outside) the nanohorn.

18.
J Nanosci Nanotechnol ; 9(10): 6113-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19908502

RESUMO

We explore early stage oxygen addition to C60 buckminsterfullerene, and compare its oxygenation behavior to that of both pristine and defective metallic carbon nanotubes, using ab initio theoretical modeling. For fullerene oxygen addition up to C60O4, in general oxygenation preferentially occurs at the pentagon-hexagon bonds ([5,6] type addition), leading to open annulene structures, as opposed to the closed [6, 6] epoxide isomers. For carbon nanotubes the preference for annulene structures is significantly more pronounced as all epoxide addition is endothermic. Higher reaction enthalpies are found for oxidation in the proximity of defects as compared to the pristine sidewalls. In most cases higher reaction enthalpies are found for fullerene oxygenation as compared to carbon nanotubes.

19.
J Nanosci Nanotechnol ; 9(10): 6171-5, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19908511

RESUMO

We present a combined theoretical and experimental comparative study of the deposition of five different metals on perfect and defective graphene and multi-walled carbon nanotubes (MWNTs): Ti, Ni, Pd, Pt and Au. Atomistic modelling successfully provides a comprehensive picture of surface binding, diffusion and aggregation properties for these metals, highlighting some fundamental differences in their surface chemical and electronic behaviour. We correlate these theoretical results with experimental TEM images of metal deposited MWCNTs.

20.
J Nanosci Nanotechnol ; 9(10): 6078-83, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19908497

RESUMO

We examine the use of nucleus independent chemical shifts (NICS) as a tool for analysis of pristine and fluorinated finite-length carbon nanotubes. The introduction of both variable molecule length and different nanotube curvatures introduces additional subtleties to NICS analysis not present in analysis of more conventional 2D molecules. Notably the precise length of tube segment considered can strongly influence calculated NICS values. We provide specific examples using (6, 6) and (7,7) nanotube segments under fluorination. Although care should be taken when comparing systems of different length or curvature, important chemical information can still be retrieved from the local aromaticity patterns. In particular, local aromaticity is observed to play a relevant role in the orientation towards the ideal C4F addition pattern for fluorinated carbon nanotubes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA