Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34300442

RESUMO

IOTA is a distributed ledger technology (DLT) platform proposed for the internet of things (IoT) systems in order to tackle the limitations of Blockchain in terms of latency, scalability, and transaction cost. The main concepts used in IOTA to reach this objective are a directed acyclic graph (DAG) based ledger, called Tangle, used instead of the chain of blocks, and a new validation mechanism that, instead of relying on the miners as it is the case in Blockchain, relies on participating nodes that cooperate to validate the new transactions. Due to the different IoT capabilities, IOTA classifies these devices into full and light nodes. The light nodes are nodes with low computing resources which seek full nodes' help to validate and attach its transaction to the Tangle. The light nodes are manually connected to the full nodes by using the full node IP address or the IOTA client load balancer. This task distribution method overcharges the active full nodes and, thus, reduces the platform's performance. In this paper, we introduce an efficient mechanism to distribute the tasks fairly among full nodes and hence achieve load balancing. To do so, we consider the task allocation between the nodes by introducing an enhanced resource allocation scheme based on the weight least connection algorithm (WLC). To assess its performance, we investigate and test different implementation scenarios. The results show an improved balancing of data traffic among full nodes based on their weights and number of active connections.

2.
J Med Syst ; 39(12): 185, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26490143

RESUMO

Advances supported by emerging wearable technologies in healthcare promise patients a provision of high quality of care. Wearable computing systems represent one of the most thrust areas used to transform traditional healthcare systems into active systems able to continuously monitor and control the patients' health in order to manage their care at an early stage. However, their proliferation creates challenges related to data management and integration. The diversity and variety of wearable data related to healthcare, their huge volume and their distribution make data processing and analytics more difficult. In this paper, we propose a generic semantic big data architecture based on the "Knowledge as a Service" approach to cope with heterogeneity and scalability challenges. Our main contribution focuses on enriching the NIST Big Data model with semantics in order to smartly understand the collected data, and generate more accurate and valuable information by correlating scattered medical data stemming from multiple wearable devices or/and from other distributed data sources. We have implemented and evaluated a Wearable KaaS platform to smartly manage heterogeneous data coming from wearable devices in order to assist the physicians in supervising the patient health evolution and keep the patient up-to-date about his/her status.


Assuntos
Gestão da Informação em Saúde/organização & administração , Tecnologia de Sensoriamento Remoto/instrumentação , Telemedicina/instrumentação , Algoritmos , Automonitorização da Glicemia/instrumentação , Diabetes Mellitus , Humanos , Reprodutibilidade dos Testes
3.
Stud Health Technol Inform ; 205: 206-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25160175

RESUMO

Emerging new technologies in healthcare has proven great promises for managing patient care. In recent years, the evolution of Information and Communication Technologies pushes many research studies to think about treatment plan adaptation in this area. The main goal is to accelerate the decision making by dynamically generating new treatment due to unexpected situations. This paper portrays the treatment adaptation from a new perspective inspired from the human nervous system named autonomic computing. Thus, the selected potential studies are classified according to the maturity levels of this paradigm. To guarantee optimal and accurate treatment adaptation, challenges related to medical knowledge and data are identified and future directions to be explored in healthcare systems are discussed.


Assuntos
Inteligência Artificial , Sistemas de Apoio a Decisões Clínicas/tendências , Atenção à Saúde/tendências , Empreendedorismo/tendências , Informática Médica/tendências , Medicina de Precisão/tendências , Previsões , Objetivos Organizacionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA