Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Appl Clin Med Phys ; 18(2): 37-43, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28300379

RESUMO

Single-isocenter, multitarget cranial stereotactic radiosurgery (SRS) is more efficient than using an isocenter for each target, but spatial positioning uncertainties can be magnified at locations away from the isocenter. This study reports on the spatial accuracy of two frameless, linac-based SRS systems for multitarget, single-isocenter SRS as a function of distance from the isocenter. One system uses the ExacTrac platform for image guidance and the other localizes with cone beam computed tomography (CBCT). For each platform, a phantom with 12 target BBs distributed up to 13.8 cm from the isocenter was aligned starting from five different initial offsets and then imaged with the treatment beam at seven different gantry and couch angles. The distribution of the resulting positioning errors demonstrated the value of adding a 1-mm PTV margin for targets up to about 7-8 cm from the isocenter. For distances 10 cm or more, the CBCT-based alignment remained within 1.1 mm while the ExacTrac-based alignment differed by up to 2.2 mm.


Assuntos
Neoplasias Encefálicas/cirurgia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Cirurgia Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico , Humanos , Posicionamento do Paciente , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
2.
J Appl Clin Med Phys ; 15(5): 4927, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25207579

RESUMO

The purpose of this study is to apply the principles of statistical process control (SPC) in the context of patient specific intensity-modulated radiation therapy (IMRT) QA to set clinic-specific action limits and evaluate the impact of changes to the multileaf collimator (MLC) calibrations on IMRT QA results. Ten months of IMRT QA data with 247 patient QAs collected on three beam-matched linacs were retrospectively analyzed with a focus on the gamma pass rate (GPR) and the average ratio between the measured and planned doses. Initial control charts and action limits were calculated. Based on this data, changes were made to the leaf gap parameter for the MLCs to improve the consistency between linacs. This leaf gap parameter is tested monthly using a MLC sweep test. A follow-up dataset with 424 unique QAs were used to evaluate the impact of the leaf gap parameter change. The initial data average GPR was 98.6% with an SPC action limit of 93.7%. The average ratio of doses was 1.003, with an upper action limit of 1.017 and a lower action limit of 0.989. The sweep test results for the linacs were -1.8%, 0%, and +1.2% from nominal. After the adjustment of the leaf gap parameter, all sweep test results were within 0.4% of nominal. Subsequently, the average GPR was 99.4% with an SPC action limit of 97.3%. The average ratio of doses was 0.997 with an upper action limit of 1.011 and a lower action limit of 0.981. Applying the principles of SPC to IMRT QA allowed small differences between closely matched linacs to be identified and reduced. Ongoing analysis will monitor the process and be used to refine the clinical action limits for IMRT QA.


Assuntos
Aceleradores de Partículas/instrumentação , Aceleradores de Partículas/normas , Avaliação de Processos em Cuidados de Saúde/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Conformacional/instrumentação , Radioterapia Conformacional/normas , Análise de Falha de Equipamento/normas , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
3.
J Urol ; 190(2): 521-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23415964

RESUMO

PURPOSE: We evaluate long-term disease control and chronic toxicities observed in patients treated with intensity modulated radiation therapy for clinically localized prostate cancer. MATERIALS AND METHODS: A total of 302 patients with localized prostate cancer treated with image guided intensity modulated radiation therapy between July 2000 and May 2005 were retrospectively analyzed. Risk groups (low, intermediate and high) were designated based on National Comprehensive Cancer Network guidelines. Biochemical control was based on the American Society for Therapeutic Radiology and Oncology (Phoenix) consensus definition. Chronic toxicity was measured at peak symptoms and at last visit. Toxicity was scored based on Common Terminology Criteria for Adverse Events v4. RESULTS: The median radiation dose delivered was 75.6 Gy (range 70.2 to 77.4) and 35.4% of patients received androgen deprivation therapy. Patients were followed until death or from 6 to 138 months (median 91) for those alive at last evaluation. Local and distant recurrence rates were 5% and 8.6%, respectively. At 9 years biochemical control rates were 77.4% for low risk, 69.6% for intermediate risk and 53.3% for high risk cases (log rank p = 0.05). On multivariate analysis T stage and prostate specific antigen group were prognostic for biochemical control. At last followup only 0% and 0.7% of patients had persistent grade 3 or greater gastrointestinal and genitourinary toxicity, respectively. High risk group was associated with higher distant metastasis rate (p = 0.02) and death from prostate cancer (p = 0.0012). CONCLUSIONS: This study represents one of the longest experiences with intensity modulated radiation therapy for prostate cancer. With a median followup of 91 months, intensity modulated radiation therapy resulted in durable biochemical control rates with low chronic toxicity.


Assuntos
Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/métodos , Idoso , Idoso de 80 Anos ou mais , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento
4.
JMIR Form Res ; 7: e39061, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930198

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a disruption in normal brain function caused by an impact of external forces on the head. TBI affects millions of individuals per year, many potentially experiencing chronic symptoms and long-term disability, creating a public health crisis and an economic burden on society. The public discourse around sport-related TBIs has increased in recent decades; however, recognition of a possible TBI remains a challenge. The fencing response is an immediate posturing of the limbs, which can occur in individuals who sustain a TBI and can be used as an overt indicator of TBI. Typically, an individual demonstrating the fencing response exhibits extension in 1 arm and flexion in the contralateral arm immediately upon impact to the head; variations of forearm posturing among each limb have been observed. The tonic posturing is retained for several seconds, sufficient for observation and recognition of a TBI. Since the publication of the original peer-reviewed article on the fencing response, there have been efforts to raise awareness of the fencing response as a visible sign of TBI through publicly available web-based platforms, such as Twitter and Wikipedia. OBJECTIVE: We aimed to quantify trends that demonstrate levels of public discussion and awareness of the fencing response over time using data from Twitter and Wikipedia. METHODS: Raw Twitter data from January 1, 2010, to December 31, 2019, were accessed using the RStudio package academictwitteR and queried for the text "fencing response." Data for page views of the Fencing Response Wikipedia article from January 1, 2010, to December 31, 2019, were accessed using the RStudio packages wikipediatrend and pageviews. Data were clustered by weekday, month, half-year (to represent the American football season vs off-season), and year to identify trends over time. Seasonal regression analysis was used to analyze the relationship between the number of fencing response tweets and page views and month of the year. RESULTS: Twitter mentions of the fencing response and Wikipedia page views increased overall from 2010 to 2019, with hundreds of tweets and hundreds of thousands of Wikipedia page views per year. Twitter mentions peaked during the American football season, especially on and following game days. Wikipedia page views did not demonstrate a clear weekday or seasonal pattern, but instead had multiple peaks across various months and years, with January having more page views than May. CONCLUSIONS: Here, we demonstrated increased awareness of the fencing response over time using public data from Twitter and Wikipedia. Effective scientific communication through free public platforms can help spread awareness of clinical indicators of TBI, such as the fencing response. Greater awareness of the fencing response as a "red-flag" sign of TBI among coaches, athletic trainers, and sports organizations can help with medical care and return-to-play decisions.

5.
Med Phys ; 36(11): 5359-73, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19994544

RESUMO

AAPM Task Group 119 has produced quantitative confidence limits as baseline expectation values for IMRT commissioning. A set of test cases was developed to assess the overall accuracy of planning and delivery of IMRT treatments. Each test uses contours of targets and avoidance structures drawn within rectangular phantoms. These tests were planned, delivered, measured, and analyzed by nine facilities using a variety of IMRT planning and delivery systems. Each facility had passed the Radiological Physics Center credentialing tests for IMRT. The agreement between the planned and measured doses was determined using ion chamber dosimetry in high and low dose regions, film dosimetry on coronal planes in the phantom with all fields delivered, and planar dosimetry for each field measured perpendicular to the central axis. The planar dose distributions were assessed using gamma criteria of 3%/3 mm. The mean values and standard deviations were used to develop confidence limits for the test results using the concept confidence limit = /mean/ + 1.96sigma. Other facilities can use the test protocol and results as a basis for comparison to this group. Locally derived confidence limits that substantially exceed these baseline values may indicate the need for improved IMRT commissioning.


Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/normas , Dosimetria Fotográfica , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Garantia da Qualidade dos Cuidados de Saúde
6.
Int J Radiat Oncol Biol Phys ; 68(4): 1053-8, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17398023

RESUMO

PURPOSE: To identify prognostic factors and evaluate biochemical control rates for patients with localized prostate cancer treated with either high-dose intensity-modulated radiotherapy (IMRT) or conventional-dose three-dimensional conformal radiotherapy 3D-CRT. METHODS: Four hundred sixteen patients with a minimum follow-up of 3 years (median, 5 years) were included. Two hundred seventy-one patients received 3D-CRT with a median dose of 68.4 Gy (range, 66-71 Gy). The next 145 patients received IMRT with a median dose of 75.6 Gy (range, 70.2-77.4 Gy). Biochemical control rates were calculated according to both American Society for Therapeutic Radiology and Oncology (ASTRO) consensus definitions. Prognostic factors were identified using both univariate and multivariate analyses. RESULTS: The 5-year biochemical control rate was 60.4% for 3D-CRT and 74.1% for IMRT (p < 0.0001, first ASTRO Consensus definition). Using the ASTRO Phoenix definition, the 5-year biochemical control rate was 74.4% and 84.6% with 3D-RT and IMRT, respectively (p = 0.0326). Univariate analyses determined that PSA level, T stage, Gleason score, perineural invasion, and radiation dose were predictive of biochemical control. On multivariate analysis, dose, Gleason score, and perineural invasion remained significant. CONCLUSION: On the basis of both ASTRO definitions, dose, Gleason score, and perineural invasion were predictive of biochemical control. Intensity-modulated radiotherapy allowed delivery of higher doses of radiation with very low toxicity, resulting in improved biochemical control.


Assuntos
Neoplasias da Próstata/sangue , Neoplasias da Próstata/radioterapia , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada , Análise de Variância , Consenso , Seguimentos , Humanos , Masculino , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/patologia , Radioterapia (Especialidade)/normas , Dosagem Radioterapêutica , Estudos Retrospectivos , Medição de Risco/métodos
7.
Int J Radiat Oncol Biol Phys ; 97(5): 1021-1025, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28332984

RESUMO

PURPOSE: This report describes the long-term outcomes of a prospective trial of intensity modulated radiation therapy (IMRT), integrating a 111In capromab pendetide (ProstaScint) scan-directed simultaneous integrated boost (SIB) for localized prostate cancer. METHODS AND MATERIALS: Seventy-one patients with T1N0M0 to T4N0M0 prostate cancer were enrolled, and their ProstaScint and pelvic computed tomography scans were coregistered for treatment planning. The entire prostate received 75.6 Gy in 42 fractions with IMRT, whereas regions of increased uptake on ProstaScint scans received 82 Gy as an SIB. Patients with intermediate- and high-risk disease also received 6 months and 12 months of adjuvant hormonal therapy, respectively. RESULTS: The study enrolled 31 low-, 30 intermediate-, and 10 high-risk patients. The median follow-up was 120 months (range, 24-150 months). The 10-year biochemical control rates were 85% for the entire cohort and 84%, 84%, and 90% for patients with low-, intermediate-, and high-risk disease, respectively. The 10-year survival rate of the entire cohort was 69%. Pretreatment prostate-specific antigen level >10 ng/mL and boost volume of >10% of the prostate volume were significantly associated with poorer biochemical control and survival. The outcomes were compared with those of a cohort of 302 patients treated similarly but without the SIB and followed up for a median of 91 months (range, 6-138 months). The 5- and 10-year biochemical control rates were 86% and 61%, respectively, in patients without the SIB compared with 94% and 85%, respectively, in patients in this trial who received the SIB (P=.02). The cohort that received an SIB did not have increased toxicity. CONCLUSIONS: The described IMRT strategy, integrating multiple imaging modalities to administer 75.6 Gy to the entire prostate with a boost dose of 82 Gy, was feasible. The addition of the SIB was associated with greater biochemical control but not toxicity. Modern imaging technology can be used to locally intensify the dose to tumors and spare normal tissues, producing very favorable long-term biochemical disease control.


Assuntos
Recidiva Local de Neoplasia/prevenção & controle , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Hipofracionamento da Dose de Radiação , Lesões por Radiação/etiologia , Radioterapia Conformacional/métodos , Adulto , Idoso , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/prevenção & controle , Radioterapia Conformacional/efeitos adversos , Radioterapia Guiada por Imagem/efeitos adversos , Radioterapia Guiada por Imagem/métodos , Resultado do Tratamento
8.
Adv Radiat Oncol ; 2(3): 437-454, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114613

RESUMO

PURPOSE: To present the most updated American College of Radiology (ACR) Appropriateness Criteria formed by an expert panel on the appropriate delivery of external beam radiation to manage stage T1 and T2 prostate cancer (in the definitive setting and post-prostatectomy) and to provide clinical variants with expert recommendations based on accompanying Appropriateness Criteria for target volumes and treatment planning. METHODS AND MATERIALS: The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a panel of multidisciplinary experts. The guideline development and revision process includes an extensive analysis of current medical literature from peer-reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In instances in which evidence is lacking or equivocal, expert opinion may supplement available evidence to recommend imaging or treatment. RESULTS: The panel summarizes the most recent and relevant literature on the topic, including organ motion and localization methods, image guidance, and delivery techniques (eg, 3-dimensional conformal intensity modulation). The panel presents 7 clinical variants, including (1) a standard case and cases with (2) a distended rectum, (3) a large-volume prostate, (4) bilateral hip implants, (5) inflammatory bowel disease, (6) prior prostatectomy, and (7) a pannus extending into the radiation field. Each case outlines the appropriate techniques for simulation, treatment planning, image guidance, dose, and fractionation. Numerical rating and commentary is given for each treatment approach in each variant. CONCLUSIONS: External beam radiation is a key component of the curative management of T1 and T2 prostate cancer. By combining the most recent medical literature, these Appropriateness Criteria can aid clinicians in determining the appropriate treatment delivery and personalized approaches for individual patients.

9.
Med Phys ; 33(5): 1476-89, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16752582

RESUMO

Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT, (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems.


Assuntos
Elétrons/uso terapêutico , Cuidados Intraoperatórios/normas , Aceleradores de Partículas/instrumentação , Aceleradores de Partículas/normas , Guias de Prática Clínica como Assunto , Proteção Radiológica/normas , Agências Internacionais , Internacionalidade , Proteção Radiológica/métodos , Sociedades Médicas
10.
Pract Radiat Oncol ; 6(6): e269-e275, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27025166

RESUMO

BACKGROUND: To compare plan robustness of volumetric modulated arc therapy (VMAT) with intensity modulated radiation therapy (IMRT) and to compare the effectiveness of 3 plan robustness quantification methods. METHODS AND MATERIALS: The VMAT and IMRT plans were created for 9 head and neck cancer patients. For each plan, 6 new perturbed dose distributions were computed using ±3 mm setup deviations along each of the 3 orientations. Worst-case analysis (WCA), dose-volume histogram (DVH) band (DVHB), and root-mean-square dose-volume histogram (RVH) were used to quantify plan robustness. In WCA, a shaded area in the DVH plot bounded by the DVHs from the lowest and highest dose per voxel was displayed. In DVHB, we displayed the envelope of all DVHs in band graphs of all the 7 dose distributions. The RVH represents the relative volume on the vertical axis and the root-mean-square-dose on the horizontal axis. The width from the first 2 methods at different target DVH indices (such as D95% and D5%) and the area under the RVH curve for the target were used to indicate plan robustness. Results were compared using Wilcoxon signed-rank test. RESULTS: The DVHB showed that the width at D95% of IMRT was larger than that of VMAT (unit Gy) (1.59 vs 1.18) and the width at D5% of IMRT was comparable to that of VMAT (0.59 vs 0.54). The WCA showed similar results between IMRT and VMAT plans (D95%: 3.28 vs 3.00; D5%: 1.68 vs 1.95). The RVH showed the area under the RVH curve of IMRT was comparable to that of VMAT (1.13 vs 1.15). No statistical significance was found in plan robustness between IMRT and VMAT. CONCLUSIONS: The VMAT is comparable to IMRT in terms of plan robustness. For the 3 quantification methods, WCA and DVHB are DVH parameter-dependent, whereas RVH captures the overall effect of uncertainties.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Idoso , Idoso de 80 Anos ou mais , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Carga Tumoral
11.
Pract Radiat Oncol ; 5(5): 312-318, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26362705

RESUMO

PURPOSE: Incident learning is a critical tool to improve patient safety. The Patient Safety and Quality Improvement Act of 2005 established essential legal protections to allow for the collection and analysis of medical incidents nationwide. METHODS AND MATERIALS: Working with a federally listed patient safety organization (PSO), the American Society for Radiation Oncology and the American Association of Physicists in Medicine established RO-ILS: Radiation Oncology Incident Learning System (RO-ILS). This paper provides an overview of the RO-ILS background, development, structure, and workflow, as well as examples of preliminary data and lessons learned. RO-ILS is actively collecting, analyzing, and reporting patient safety events. RESULTS: As of February 24, 2015, 46 institutions have signed contracts with Clarity PSO, with 33 contracts pending. Of these, 27 sites have entered 739 patient safety events into local database space, with 358 events (48%) pushed to the national database. CONCLUSIONS: To establish an optimal safety culture, radiation oncology departments should establish formal systems for incident learning that include participation in a nationwide incident learning program such as RO-ILS.


Assuntos
Radioterapia (Especialidade)/normas , Humanos , Gestão da Segurança
12.
Int J Radiat Oncol Biol Phys ; 53(5): 1130-8, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12128112

RESUMO

PURPOSE: Transabdominal ultrasound localization of the prostate gland and its immediate surrounding anatomy has been used to guide the positioning of patients for the treatment of prostate cancer. This process was evaluated in terms of (1) the reproducibility of the ultrasound measurement; (2) a comparison of patient position between ultrasound localization and skin marks determined from a CT treatment planning scan; (3) the predictive indicators of patient anatomy not well suited for ultrasound localization; (4) the measurement of prostate organ displacement resulting from ultrasound probe pressure; and (5) quality assurance measures. METHODS AND MATERIALS: The reproducibility of the ultrasound positioning process was evaluated for same-day repeat positioning by the same ultrasound operator (22 patients) and for measurements made by 2 different operators (38 patients). Differences between conventional patient positioning (CT localization with skin markings) and ultrasound-based positioning were determined for 38 patients. The pelvic anatomy was evaluated for 34 patients with pretreatment CT scans to identify predictors of poor ultrasound image quality. The displacement of the prostate resulting from pressure of the ultrasound probe was measured for 16 patients with duplicate CT scans with and without a simulated probe. Finally, daily, monthly, and semiannual quality assurance tests were evaluated. RESULTS: Self-verification tests of ultrasound positioning indicated a shift of <3 mm in approximately 95% of cases. Interoperator tests indicated shifts of <3 mm in approximately 80-90% of cases. The mean difference in patient positioning between conventional and ultrasound localization for lateral shifts was 0.3 mm (SD 2.5): vertical, 1.3 mm (SD 4.7 mm) and longitudinal, 1.0 mm (SD 5.1). However, on a single day, the differences were >10 mm in 1.5% of lateral shifts, 7% of longitudinal shifts, and 7% of vertical shifts. The depth to the isocenter, thickness of tissue overlying the bladder, and position of the prostate relative to the pubic symphysis, but not the bladder volume, were significant predictive indicators of poor ultrasound imaging. The pressure of the ultrasound probe displaced the prostate in 7 of the 16 patients by an average distance of 3.1 mm; 9 patients (56%) showed no displacement. Finally, the quality assurance tests detected ultrasound equipment defects. CONCLUSION: The ultrasound positioning system is reproducible and may indicate the need for significant positioning moves. Factors that predict poor image quality are the depth to the isocenter, thickness of tissue overlying the bladder, and position of the prostate relative to the pubic symphysis. The prostate gland may be displaced a small amount by the pressure of the ultrasound probe. A quality assurance program is necessary to detect ultrasound equipment defects that could result in patient alignment errors.


Assuntos
Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos , Humanos , Masculino , Movimento , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Fatores de Tempo
14.
Med Phys ; 30(8): 2089-115, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12945975

RESUMO

Intensity-modulated radiation therapy (IMRT) represents one of the most significant technical advances in radiation therapy since the advent of the medical linear accelerator. It allows the clinical implementation of highly conformal nonconvex dose distributions. This complex but promising treatment modality is rapidly proliferating in both academic and community practice settings. However, these advances do not come without a risk. IMRT is not just an add-on to the current radiation therapy process; it represents a new paradigm that requires the knowledge of multimodality imaging, setup uncertainties and internal organ motion, tumor control probabilities, normal tissue complication probabilities, three-dimensional (3-D) dose calculation and optimization, and dynamic beam delivery of nonuniform beam intensities. Therefore, the purpose of this report is to guide and assist the clinical medical physicist in developing and implementing a viable and safe IMRT program. The scope of the IMRT program is quite broad, encompassing multileaf-collimator-based IMRT delivery systems, goal-based inverse treatment planning, and clinical implementation of IMRT with patient-specific quality assurance. This report, while not prescribing specific procedures, provides the framework and guidance to allow clinical radiation oncology physicists to make judicious decisions in implementing a safe and efficient IMRT program in their clinics.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia Conformacional/normas , Algoritmos , Humanos , Aceleradores de Partículas , Controle de Qualidade , Radioterapia (Especialidade)/educação , Radioterapia (Especialidade)/métodos , Radiologia/educação , Radiologia/métodos , Radiometria , Dosagem Radioterapêutica , Radioterapia Assistida por Computador , Radioterapia Conformacional/instrumentação
15.
J Appl Clin Med Phys ; 5(4): 120-5, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15738926

RESUMO

We have recently commissioned a temporary radiation therapy facility that is novel in two aspects: it was constructed using modular components, and the LINAC was installed in one of the modular sections before it was lifted into position. Additional steel and granular fill was added to the modular sections on-site during construction. The building will be disassembled and removed when no longer needed. This paper describes the radiation shielding specifications and survey of the facility, as well as the ramifications for acceptance testing occasioned by the novel installation procedure. The LINAC is a Varian 21EX operating at 6 MV and 18 MV. The radiation levels outside the vault satisfied the design criteria, and no anomalous leakage was detected along the joints of the modular structure. At 18 MV and 600 monitor units (MU) per minute, the radiation level outside the primary barrier walls was 8.5 micro Sv/h of photons; there were no detectable neutrons. Outside the direct-shielded door, the levels were 0.4 micro Sv/h of photons and 3.0 micro Sv/h of neutrons. The isocentricity of the accelerator met the acceptance criteria and was not affected by its preinstallation into an integrated baseframe and subsequent transport to the building site.


Assuntos
Arquitetura de Instituições de Saúde/instrumentação , Arquitetura de Instituições de Saúde/métodos , Aceleradores de Partículas/instrumentação , Garantia da Qualidade dos Cuidados de Saúde/métodos , Monitoramento de Radiação/métodos , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Desenho Assistido por Computador , Humanos , Doses de Radiação , Lesões por Radiação/prevenção & controle , Radioterapia/instrumentação , Estados Unidos
16.
Med Dosim ; 29(3): 196-203, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15324916

RESUMO

This study was performed to examine potential field arrangements for irradiating non-small cell lung cancer (NSCLC) on a dose escalation study. An example patient was chosen and 7 coplanar treatment plans were created to treat a NSCLC. Two plans included prophylactic nodal irradiation (PNRT) and 5 did not. Four plans used 4 fields, 2 plans used 5 fields, and 1 plan included dynamic conformal 360 degrees rotational therapy. All plans delivered 80 Gy to the isocenter with 10-MV x-rays. Each plan was initially created without dose inhomogeneity corrections and then was recalculated with these corrections, maintaining the same weighting and number of monitor units. Avoiding PNRT spared a considerable volume of normal tissue from radiation. Plans with 5 fields generally spared normal tissues better than 4-field plans. There was no benefit to the dynamic conformal 360 degrees rotational plan. Inhomogeneity corrections revealed that higher doses were delivered to both the tumor and normal structures. Seven beam arrangements for the treatment of NSCLC were compared to develop potential beam arrangements that would be applicable to treating NSCLC on a multi-institutional dose escalation study. We favor the use of at least 5 beams in most situations. It is possible that the use of more fields would further improve plans up to a point of diminishing returns, as exemplified by the lack of benefit seen with the dynamic conformal 360 degrees rotational plan. It is possible that the use of noncoplanar fields or intensity-modulated radiation therapy (IMRT) may further improve the therapeutic ratio.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Lesões por Radiação/prevenção & controle , Planejamento da Radioterapia Assistida por Computador , Humanos , Radiografia Intervencionista , Dosagem Radioterapêutica , Software , Tomografia Computadorizada por Raios X
18.
Radiat Oncol ; 7: 174, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23083010

RESUMO

Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. SUMMARY SENTENCE: Proton beam therapy is a technically advanced and promising form of radiation therapy.


Assuntos
Neoplasias/radioterapia , Terapia com Prótons , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA